Skip to main content
Log in

A Tunneling Current Model with a Realistic Barrier for Ultra-Thin High-k Dielectric ZrO2 Material Based MOS Devices

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, a theoretical model to estimate the tunneling current density of ultra-thin MOS devices is presented. First an ideal barrier has been assumed for the modeling. Then development in the results is brought in by taking into account the barrier height lowering due to the image force effect (practical barrier). The SiO2 material with selected high-k dielectric material ZrO2 based MOS structure is used to verify the tunneling current density model against the 2-D device simulator, ATLAS of Silvaco TCAD for a wide variation of oxide thickness and biasing conditions having doping concentration of 5 × 1017 cm− 3. Tunnel resistivity is also evaluated utilizing this tunneling current density model. Excellent agreement between the two are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu H, Zhao Y, White MH (2006) Solid-State Electron 50:1164–1169

    Article  CAS  Google Scholar 

  2. Holm R (1951) J Appl Phys 22:569–574

    Article  Google Scholar 

  3. Hartman TE (1964) J Appl Phys 35:3283–3294

    Article  Google Scholar 

  4. Chow CK (1965) J Appl Phys 36:559–563

    Article  Google Scholar 

  5. Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, Lablanc AR (2003) IEEE J Solid State Circ 9:256–268

    Article  Google Scholar 

  6. Majkusiak B (1990) IEEE Trans Electron Devices 37:1087–1092

    Article  Google Scholar 

  7. Ranuarez J, Deen M, Chen C (2006) Microelectron Reliab 46:1939–1956

    Article  Google Scholar 

  8. Li F, Mudanai SP, Fan YY, Franklin L, Banerjee SK (2006) IEEE Trans Electron Devices 53:1096–1106

    Article  CAS  Google Scholar 

  9. Dordo A, Schurrer F (2015) J Comput Phys 284:95–116

    Article  Google Scholar 

  10. Tuan N, Lien D (2009) J Phys Conf Ser 187:0120891–6

    Google Scholar 

  11. Hewson A, Newns D (1974) Jap J Appl Phys 13:121–130

    Article  Google Scholar 

  12. Zeng L, Xia Z, Du G, Kang J, Han R, Liu X (2009) IEEE Trans Nanotechnol 8:10–15

    Article  Google Scholar 

  13. Tugulea A, Dascalu D (1984) J Appl Phys 56:2823–2831

    Article  CAS  Google Scholar 

  14. Roulet B, Jean MS (2000) Am J Phys 68:319–324

    Article  Google Scholar 

  15. Kundu S, Shripathi T, Banerji P (2011) Solid State Commun 151:1881–1884

    Article  CAS  Google Scholar 

  16. Rao A, Dsa J, Goyal S, Singh B (2014) IEEE Trans Nucl Sci 61:2397–2401

    Article  CAS  Google Scholar 

  17. Rao A, Dwivedi A, Goswami M, Singh B (2014) Mater Sci Semicond Process 19:145–149

    Article  CAS  Google Scholar 

  18. Maity NP, Maity R, Thapa RK, Baishya S (2015) J Nanoelectron Optoelectron 10:645–648

    Article  CAS  Google Scholar 

  19. Palumbo F, Miranda E (2011) IEEE Trans Nucl Sci 58:770–775

    Article  CAS  Google Scholar 

  20. Wolfson SC, Ho FD (2014) Solid State Electron 99:23–27

    Google Scholar 

  21. Wolfson SC, Ho FD (2012) Microelectron Eng 96:40–44

    Article  CAS  Google Scholar 

  22. Ghosh RK, Mahapatra S (2013) IEEE Trans Electron Devices 60:274–279

    Article  CAS  Google Scholar 

  23. Sereni G, Vandelli L, Veksler D, Larcher L (2015) IEEE Trans Electron Devices 62:705–712

    Article  CAS  Google Scholar 

  24. Ghosh RK, Mahapatra S (2013) IEEE J Electron Devices Soc 1:175–180

    Article  Google Scholar 

  25. Barengolts YA, Beril S (2014) IEEE Trans Plasma Sci 42:3109–3112

    Article  Google Scholar 

  26. Vishnoi R, Kumar MJ (2014) IEEE Trans Electron Devices 61:2264–2270

    Article  Google Scholar 

  27. Maity NP, Maity R, Thapa RK, Baishya S (2015) Nanosci Nanotechnol Lett 7:331–333

    Article  Google Scholar 

  28. Alam K, Takegi S, Takenaka M (2014) IEEE Trans Electron Devices 61:3595–3600

    Google Scholar 

  29. Ren N, Sheng K (2014) IEEE Trans Electron Devices 61:4158–4165

    Article  CAS  Google Scholar 

  30. Simmons JG (1963) J Appl Phys 34:1793–1803

    Article  Google Scholar 

  31. Smythe WR (1968) Static and dynamic electricity. McGraw-Hill, New York

    Google Scholar 

  32. Kerber A, Cartier E, Degraeve R, Roussel PJ, Pantisano L, Kauerauf T, Groeseneken G, Maes HE, Schwalke U (2003) IEEE Trans Electron Devices 50:1261–1269

    Article  CAS  Google Scholar 

  33. Fan YY, Nieh R, Lee JC, Lucovsky G, Brown G, Register L, Banerjee SK (2002) IEEE Trans Electron Devices 49:1969–1978

    Article  CAS  Google Scholar 

  34. Kim H (2004) Nano-Scale Zirconia and Hafnia dielectrics grown by atomic layer deposition: crystallinity, interface structures and electrical properties. Ph.D. Thesis, Stanford University

Download references

Acknowledgments

The authors are highly indebted to Department of Science and Technology (DST), Government of India, for supporting this technical work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, N.P., Maity, R. & Baishya, S. A Tunneling Current Model with a Realistic Barrier for Ultra-Thin High-k Dielectric ZrO2 Material Based MOS Devices. Silicon 10, 1645–1652 (2018). https://doi.org/10.1007/s12633-017-9648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9648-4

Keywords

Navigation