Skip to main content
Log in

Effect of CuO-addition on the Dielectric Parameters of Sodium Zinc Phosphate Glasses

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The dielectric properties of sodium zinc phosphate glasses doped with copper oxide have been investigated over a frequency range of 1.05–100 kHz in a vacuum medium (10−5 torr). Some dielectric parameters, such as dielectric constant ε′, dielectric loss ε′′, dielectric loss tangent (tan δ) and AC conductivity, have been estimated. It is observed that the dielectric constant is strongly dependent on the CuO concentration in the investigated phosphate glasses. The AC conductivity measurements show that these phosphate glasses are good electronic conductors. With the aid of transmission spectra of these glasses, the absorption coefficient and the optical direct bandgap are estimated. The optical bandgap is found to decrease with increasing CuO content indicating the formation of non-bridging oxygens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams I, Hadzifejzovic E (2000) Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li2O– Al2O3– TiO2– P2O5. Solid State Ionics 134:249

    Article  CAS  Google Scholar 

  2. Bhide A, Hariharan K (2007) Sodium ion transport in NaPO3– Na2SO4 glasses. Mater Chem Phys 105:213

    Article  CAS  Google Scholar 

  3. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 1:263–264

    Google Scholar 

  4. Proulx PP, Cormier G, Capobianco JA, Champagnon B, Bettinelli M (1994) Raman and low frequency Raman spectroscopy of lead, zinc and barium metaphosphate glasses doped with Eu3+ions. J Phys Condens Matter 6:275

    Article  CAS  Google Scholar 

  5. Saeed A, Elbashar YH, El shazly RM (2016) Optical properties of high density barium borate glass for gamma ray shielding applications. Journal of Optical and Quantum Electronics 48:1

    Article  CAS  Google Scholar 

  6. Elbashar YH, Saeed A (2015) Computational spectroscopic analysis by using Clausius–Mossotti method for sodium borate glass doped neodymium oxide. Res J Pharm Biol Chem Sci (RJPBCS) 6:320–326

    CAS  Google Scholar 

  7. Saeed A, Elbashar YH, El Kameesy SU (2015) Study of gamma ray attenuation of high-density bismuth silicate glass for shielding applications. Res J Pharm Biol Chem Sci (RJPBCS) 6:1830–1837

    CAS  Google Scholar 

  8. Martin SW (1991) Ionic conduction in phosphate glasses. J Am Ceram Soc 74:1767–84

    Article  CAS  Google Scholar 

  9. Sanghi S, et al (2009) Li+ ion constriction in presence of Bi2O3 and ac conductivity in Li2O- P2O5- Bi2O3 glasses. Physica B 404:1969–1973

    Article  CAS  Google Scholar 

  10. Roling B, et al (1998) Ionic ac and dc conductivities of glasses with varying modifier content. J Non-Cryst Solids 226:138–144

    Article  CAS  Google Scholar 

  11. Murawski L, et al (2003) Electronic conductivity in Na2O–FeO– P2O5 glasses. Solid State Ionics 157:293–298

    Article  CAS  Google Scholar 

  12. Mugoni C, et al (2014) Electrical conductivity of copper lithium phosphate glasses. J Non-Cryst Solids 383:137–140

    Article  CAS  Google Scholar 

  13. Lee S, Hwang S, Cha M, Shin H, Kim H (2008) Role of copper ion in preventing silver nanoparticles forming in Bi2O3– B2O3–ZnO glass. J Phys Chem Solids 69:1498

    Article  CAS  Google Scholar 

  14. El Batal FH, Marzouk SY, Nada N, Desouky SM (2007) Gamma-ray interaction with copper-doped bismuth–borate glasses. Physica B 391:88

    Article  CAS  Google Scholar 

  15. Rayan DA, Elbashar YH, Rashad MM, El-Korashy A (2013) Spectroscopic analysis of phosphate barium glass doped cupric oxide for bandpass absorption filter. J Non-Cryst Solids 382:52–56

    Article  CAS  Google Scholar 

  16. Elhaes H, Attallah M, Elbashar Y, Ibrahim M, El-Okr M (2014) Application of Cu 2O-doped phosphate glasses for bandpass filter. Journal of Physica B: Condensed Matter 449:251–254

    Article  CAS  Google Scholar 

  17. Saeed A, El Shazly RM, Elbashar YH, Abou El-azm AM, El-Okr MM, Comsan MNH, Osman AM, Abdal-Monem AM, El-Sersy AR (2014) Gamma ray attenuation in developed borate glassy. J Radiat Phys Chem 102:167–170

    Article  CAS  Google Scholar 

  18. Aboulfotoh N, Elbashar Y, Ibrahem M, Elokr M (2014) Characterization of copper doped phosphate glasses for optical applications. Journal of Ceramics International 40:10395–10399

    Article  CAS  Google Scholar 

  19. Elhaes H, Attallah M, Elbashar Y, Al-Alousi A, El-Okr M, Ibrahim M (2014) Modeling and optical properties of P2O5-ZnO-CaO- Na2O glasses doped with copper oxide. J Comput Theor Nanosci 11:2079–2084

    Article  CAS  Google Scholar 

  20. Saeed A, Elbashar YH, El Kameesy SU (2015) Towards modeling of copper-phosphate glass for optical bandpass absorption filter. Res J Pharm Biol Chem Sci (RJPBCS) 6:1390–1397

    CAS  Google Scholar 

  21. Rayan DA, Elbashar YH, El Basaty AB, Rashad MM (2015) Infrared spectroscopy of cupric oxide doped barium phosphate glass. Res J Pharm Biol Chem Sci (RJPBCS) 6:1026–1030

    CAS  Google Scholar 

  22. Elbashar YH (2015) Structural and spectroscopic analyses of copper doped P2O5-ZnO- K2O- Bi2O3 glasses. International Journal: Processing and Application of Ceramics 9:169–173

    CAS  Google Scholar 

  23. Duran A, Fernandez Navarro JM (1985) The colouring of glass by Cu2+ ions. Phys Chem Glasses 26:126

    CAS  Google Scholar 

  24. Prasad SVGVA, Sahaya Baskaran G, Veeraiah N (2005) Spectroscopic, magnetic and dielectric investigations of BaO– Ga2O3– P2O5 glasses doped by Cu ions. Phys Stat Solidi A 202:2812

    Article  CAS  Google Scholar 

  25. Arya SK, Danewalia SS, Singh K (2016) Frequency independent low-k lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. J Mater Chem C 4:3328–3336

    Article  CAS  Google Scholar 

  26. Arya SK, Danewalia SS, Arora M, Singh K (2016) Effect of variable oxidation states of vanadium on structural, optical and dielectric properties of B2O3- Li2O-zno- V2O5 glasses. J Phys Chem B 120:12168–12176

    Article  CAS  PubMed  Google Scholar 

  27. Elbashar YH, et al (2016) Influence of CuO and Al2O3 addition on the optical properties of sodium zinc phosphate glass absorption filters. Optik - International Journal for Light and Electron Optics 127:7041–7053

    Article  CAS  Google Scholar 

  28. Narula KA, Singh R, Chandra S (2000) Low frequency ac conduction and dielectric relaxation in poly(N-methyl pyrrole). Bull Mater Sci 23:227–232

    Article  CAS  Google Scholar 

  29. Cheng D (1989) Field and wave electromagnetics. Addison-Wesley, New York

    Google Scholar 

  30. Barsoum M (1997) Fundamentals of ceramics. McGraw-Hill, New York, p 543

    Google Scholar 

  31. Atyia HE (2007) Deposition temperature effect on the electric and dielectric properties of InSbSe3 thin films. Vacuum 81:590–598

    Article  CAS  Google Scholar 

  32. Duran A, Fernandez Navarro JM (1985) The colouring of glass by Cu2+ ions. Phys Chem Glasses 26:126

    CAS  Google Scholar 

  33. Hench LL, West JK (1990) Principles of electronic ceramics. Wiley, New York, p 187

    Google Scholar 

  34. Mustafaeva SN, Asadov MM, Qahramanov KSh (2007) Frequency-dependent dielectric coefficients of TlInS2 amorphous films. Semiconductor Physics, Quantum Electronics & Optoelectronics 10:58–61

    CAS  Google Scholar 

  35. Lal B, Khosa SK, Tickoo R, Bam-zai KK, Kotru PN (2004) Dielectric characteristics of melt grown doped KMgF3 crystals. Mater Chem Phys 83:158–168

    Article  CAS  Google Scholar 

  36. El-Desoky MM (1998) Dielectric behaviour and ac conductivity of sodium borate glass containing coo. J Phys Chem Solids 59:1659–1666

    Article  CAS  Google Scholar 

  37. Chen RH, Wang RJ, Chen T, Shern CS (2000) Studies on the dielectric properties and structural phase transition of K2SO4 crystal. J Phys Chem Solids 61:519–527

    Article  CAS  Google Scholar 

  38. Qiu J, Miyauchi K, Kawamoto N, Hirao K (2002) Long-lasting phosphorescence in Sn2+– Cu2+ codoped silicate glass and its high-pressure treatment effect. Appl Phys Lett 81:394

    Article  CAS  Google Scholar 

  39. Venkateswara Rao P, Satyanarayana T, Srinivasa Reddy M, Gandhi Y, Veeraiah N (2008) Nickel ion as a structural probe in PbO–Bi2O3–B2O3 glass system by means of spectroscopic and dielectric studies. Physica B 403:3751–3759

    Article  CAS  Google Scholar 

  40. Ravi Kumar V, Veeraiah N, Buddhudu S, Jaya TyagaRaju V (1997) Dielectric dispersion in CuO doped ZnF2-PbO- TeO2 glasses. J Phys III France 7:951–961

    Article  CAS  Google Scholar 

  41. Sattar AA, Rahman SA (2003) Dielectric properties of rare earth substituted Cu–Zn ferrites. Phys Stat Sol (a) 200:415

    Article  CAS  Google Scholar 

  42. Maurya D, Kumar J, Shripal (2005) Dielectric-spectroscopic and a.c. conductivity studies on layered Na2−XKXTi3O7 (X = 0.2, 0.3, 0.4) ceramics. J Phys Chem Solids 66:1614

    Article  CAS  Google Scholar 

  43. Maity S, Bhattacharya D, Ray SK (2011) Structural and impedance spectroscopy of pseudo-co-ablated (SrBi2Ta2O9)(1−x)– (La0.67Sr0.33MnO3)x composites. J Phys D: Appl Phys 44:095403

    Article  CAS  Google Scholar 

  44. Bhardwaj S, Pail J, Chand S (2014) Oxygen vacancy induced dielectric relaxation studies in Bi4−xLaxTi3O12(x = 0.0, 0.3, 0.7, 1.0) ceramics. J Mater Sci Mater Electron 25:4568–4576

    Article  CAS  Google Scholar 

  45. White MA (2011) Physical properties of materials. CRC Press, Boca Raton

    Google Scholar 

  46. Ingram MD (1987) Ionic conduction in glass. Phys Chem Glas 28:215

    CAS  Google Scholar 

  47. Murawski L, Barczynśki RJ, Samatowicz D (2003) Electronic conductivity in Na2O–FeO–P2O5 glasses. Solid State Ionics 157:293–298

    Article  CAS  Google Scholar 

  48. Stavrakas I, et al (2012) Using AC conductivity measurements to study the influence of mechanical stress on the strength of geomaterials. Open J Appl Sci 2:61–65

    Article  Google Scholar 

  49. Jonscher K (1978) Analysis of the alternating current properties of ionic conductors. J Mater Sci 13:553

    Article  CAS  Google Scholar 

  50. Angell A (1990) Dynamic processes in ionic glasses. Chem Rev 90:523

    Article  CAS  Google Scholar 

  51. Elliott SR (1987) A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135

    Article  CAS  Google Scholar 

  52. Lee WK, Liu JF, Nowick AS (1991) Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys Rev Lett 67(12-16):1559

    Article  CAS  PubMed  Google Scholar 

  53. Murowski L, Barczynski RJ (1995) Dielectric properties of transition metal oxide glasses. J Non-Cryst Solids 185:84

    Article  Google Scholar 

  54. Pavic L, Moguš-Milankovic A, Raghava Rao P, Šantic A, Ravi Kumar V, Veeraiah N (2014) Effect of alkali-earth modifier ion on electrical, dielectric and spectroscopic properties of Fe,2O3 doped \(\text {Na}_{2}\text {SO}_{4\overline {\quad }}\text {MO}_{\overline {\quad }}\mathrm {P}_{2}\mathrm {O}_{5}\) glass system. J Alloys Compd 604:352–362

    Article  CAS  Google Scholar 

  55. Chandra Babu Naidu K, Madhuri W (2016) Microwave assisted solid state reaction method: investigations on electrical and magnetic properties NiMgZn ferrites. Mater Chem Phys 181:432–443

    Article  CAS  Google Scholar 

  56. Khor SF, Talib ZA, Sidek HAA, Daud WM, Ng BH (2009) Effects of ZnO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses. Am J Appl Sci 6:1010–1014

    Article  CAS  Google Scholar 

  57. Saltas V, et al (2007) Dielectric and conductivity measurements as proxy method to monitor contamination in sandstone. J Hazard Mater 142:520–525

    Article  CAS  PubMed  Google Scholar 

  58. Mugoni C, et al (2014) Electrical conductivity of copper lithium phosphate glasses. J Non-Cryst Solids 383:137–140

    Article  CAS  Google Scholar 

  59. Vijaya Kumar B, et al (2009) Dielectric properties and conductivity in CuO and MoO 3 doped borophosphate glasses. Physica B 404:3487–3492

    Article  CAS  Google Scholar 

  60. Šantić A, Kim CW, Day DE, Moguš-Milanković A (2010) Electrical properties of Cr2O3– Fe2O3– P2O5 glasses. Part II. J Non-Cryst Solids 356:2699–2703

    Article  CAS  Google Scholar 

  61. Al-Shahrani A, Al-Hajry A, El-Desoky MM (2005) Electrical relaxation in mixed lithium and sodium iron phosphate glasses. Physica B 364:248–254

    Article  CAS  Google Scholar 

  62. Pankove JI (1971) Optical processes in semiconductors. Prentice-Hall, New Jersey

    Google Scholar 

  63. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Ch. 4, New York

    Book  Google Scholar 

  64. Qasrawi AF (2005) Refractive index, band gap and oscillator parameters of amorphous GaSe thin films. Cryst Res Technol 40:610–614

    Article  CAS  Google Scholar 

  65. Austin G, Sayer M, Sussmann RS (1974) . In: Proceedings of the 5th international conference on amorphous liquid semiconductors, Garmisch, vol II. Taylor and Francis, London, p 1343

  66. Bae B -S, Weinberg MC (1993) Ultraviolet optical absorptions of semiconducting copper phosphate glasses. J Appl Phys 73: 7760

    Article  CAS  Google Scholar 

  67. Moridi GR, Hogarth CA (1977) In: Spear WE (ed) Proceedings of the 7th internationai conference on amorphous liquid semiconductors, U. of Edinburgh Press, p 688

  68. Hogarth CA, Novikov AA (1983) A study of optical absorption edges in copper-calcium phosphate glasses containing iodin. J Phys D 16:675

    Article  CAS  Google Scholar 

  69. Khawaja EE, Khan MN, Kutub AA, Hogarth CA (1985) Some electrical and optical properties of copper-sodium-phosphate glasses. Int J Electron 58:471

    Article  CAS  Google Scholar 

  70. Kutub AA, Mohamed-Osman AE, Hogarth CA (1986) Some studies of the optical properties of copper phosphate glasses containing praseodymium. J Mater Sci 21:3517

    Article  CAS  Google Scholar 

  71. Edirisinghe SP, Hogarth CA (1989) Optical properties of some copper phosphate glasses containing calcium and barium. J Mater Sci Lett 8:789

    Article  CAS  Google Scholar 

  72. Arzeian JM, Hogarth CA (1991) Some structural, electrical and optical properties of copper phosphate glasses containing the rare-earth europium. I Mater Sci 26:5353

    Article  CAS  Google Scholar 

  73. Anderson GW, Compton WD (1970) Optical absorption properties of vanadate glasses. J Chem Phys 52:6166

    Article  CAS  Google Scholar 

  74. McSwain BD, Borrelli NF, Su G (1963) The effect of composition and temperature on the ultraviolet absorption of glass. Phys Chem Glasses 4:1–10

    CAS  Google Scholar 

Download references

Acknowledgements

Research Center for NanoMaterial Studies and their Promising Technologies, Aswan University, Aswan, Egypt

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.M., Badr, A.M., Elshaikh, H.A. et al. Effect of CuO-addition on the Dielectric Parameters of Sodium Zinc Phosphate Glasses. Silicon 10, 1265–1274 (2018). https://doi.org/10.1007/s12633-017-9599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9599-9

Keywords

Navigation