Skip to main content
Log in

First-Principles Insights of CO Adsorption Characteristics on Ge and In Substituted Silicene Nanosheet

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The structural stability, electronic properties and CO adsorption properties of pristine, Ge substituted and In substituted silicene nanosheet are studied using density functional theory. The pristine silicene is found to be more stable than the impurity substituted silicene. The electronic properties such as density of states and band gap are studied for pristine and Ge substituted silicene nanosheet. The favorable adsorption site of the CO molecule on the silicene nanosheet is identified. The adsorption characteristics of the CO molecule on silicene nanostructures are studied in terms of adsorption energy, Mulliken population, electron density, HOMO-LUMO gap, density of states spectrum and average energy gap variation. The adsorption energy, Mulliken charge transfer and average energy gap show a significant variation for the pristine and Ge substituted silicene nanosheet rather than the In substituted silicene nanosheet. From the observations, the adsorption characteristics of CO on pristine and Ge substituted silicene are found to be more favorable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kara A, Enriquez H, Seitsonend A P, Lew Yan Voone L C, Vizzini S, Aufrayg B, Oughaddoub H (2012) A review on silicene—new candidate for electronics. Surf Sci Rep 67:1–18

    Article  CAS  Google Scholar 

  2. Tchalala M R, Enriquez H, Yildirim H, Kara A, Mayne A J, Dujardin G, Ali M A, Oughaddoua H (2014) Atomic and electronic structures of the (v13 × v13)R13.9 ° of silicone sheet on Ag(1 1 1). Appl Surf Sci 303:61–66

    Article  CAS  Google Scholar 

  3. Lay G L, Aufray B, Andri C L, Oughaddou H, Biberian J-P, Padova P D, vila M E D, Ealet B, Kara A (2009) Physics and chemistry of silicene nano-ribbons. Appl Surf Sci 256:524– 529

    Article  Google Scholar 

  4. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109

    Article  Google Scholar 

  5. Enriquez H, Vizzini S, Kara A, Lalmi B, Oughaddou H (2012) Silicene structures on silver surfaces. J Phys: Condens Matter 24:314211

    Google Scholar 

  6. Jose D, Datta A (2011) Structures and electronic properties of silicene clusters: a promising material for FET and hydrogen storage. Phys Chem Chem Phys 13:7304–7311

    Article  CAS  Google Scholar 

  7. Ding Y, Wang Y (2012) Electronic structures of silicene fluoride and hydride. Appl Phys Lett 100:083102

    Article  Google Scholar 

  8. Yamacli S (2014) Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons. J Nanopart Res 16:2576

    Article  Google Scholar 

  9. Ince A, Erkoc S (2011) Silicene nanoribbons: molecular-dynamics simulations. Comput Mater Sci 50:865–870

    Article  CAS  Google Scholar 

  10. Zhang C-H, Ran Q, Shen J (2012) Structural stability of silicene-like nanotubes. Comput Phys Commun 183:30–33

    Article  CAS  Google Scholar 

  11. Drogar J, Roknabadi M R, Behdani M, Modarresi M, Kari A (2014) Hydrogen adsorption on the a-graphyne using ab initio calculations. Superlattices Microstruct 75:340–346

    Article  CAS  Google Scholar 

  12. Luan H-X, Zhang C-W, Li F, Wang P-J (2013) Electronic and magnetic properties of silicene nanoflakes by first-principles calculations. Phys Lett A 377:2792–2795

    Article  CAS  Google Scholar 

  13. Yuan Y, Quhe R, Zheng J, Wang Y, Ni Z, Shi J, Lu J (2014) Strong band hybridization between silicene and Ag(1 1 1) substrate. Physica E 58:38–42

    Article  CAS  Google Scholar 

  14. Drissi L B, Sadki K, Yahyaoui F E, Saidi E H, Bousmina M, Fassi-Fehri O (2015) DFT investigations of silicane/graphane conformers. Comput Mater Sci 96:165–170

    Article  CAS  Google Scholar 

  15. Pereda P R, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated silicene. J Chem Phys 138:194702

    Article  Google Scholar 

  16. Trivedi S, Srivastava A, Kurchania R (2014) Electronic and transport properties of silicene nanoribbons. J Comput Theor Nanosci 11:1–6

    Article  Google Scholar 

  17. Srivastava A, Jain A, Kurchania R, Tyagi N (2012) Width dependent electronic properties of graphene nanoribbons: an ab-initio study. J Comput Theor Nanosci 9:1–6

    Article  Google Scholar 

  18. Trivedi S, Srivastava A, Kurchania R (2014) Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation. J Comput Theor Nanosci 11:1–8

    Article  Google Scholar 

  19. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam M J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J (2009) Gaussian Inc Wallingford CT

  20. Becke A D (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  21. Becke A D (1993) A new mixing of Hartree–Fock and local density functional theories. J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  22. Hay P J, Wadt W R (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270

    Article  CAS  Google Scholar 

  23. Wadt W R, Hay P J (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284

    Article  CAS  Google Scholar 

  24. O’Boyle M N, Tenderholt A L, Langner K M (2008) A library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  25. Chandiramoul R, Sriram S, Balamurugan D (2014) NO adsorption studies on silicene nanosheet: DFT investigation. Appl Surf Sci Mol Phys 112:151–164

    Google Scholar 

  26. Bandyopadhyay D (2012) Effect of oxygen on the geometries, electronic and magnetic properties of small size Ni n (n = 1–6) clusters. J Mol Model 18:737–749

    Article  CAS  Google Scholar 

  27. Sriram S, Chandiramouli R, Jeyaprakash B G (2013) Influence of fluorine substitution on the properties of CdO nanocluster: a DFT approach. Struct Chem 25:389–401

    Article  Google Scholar 

  28. Deng Z, Li Z, Wang W (2015) Electron affinity and ionization potential of two-dimensional honeycomb sheets: a first principle study. Chem Phys Lett 637:26–31

    Article  CAS  Google Scholar 

  29. Nagarajan V, Chandiramouli R (2014) DFT investigation of formaldehyde adsorption characteristics on MgO nanotube. J Inorg Organomet Polym 24:1038–1047

    Article  CAS  Google Scholar 

  30. Nagarajan V, Chandiramouli R (2014) NiO nanocone as a CO sensor: DFT investigation. Struct Chem 25:1765–1771

    Article  CAS  Google Scholar 

  31. Osborn T H, Farajian A A (2014) Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res 7(7):945–952

    Article  CAS  Google Scholar 

  32. Feng J-W, Liu Y-J, Wang H-X, Zhao J-X, Cai Q-H, Wang X-Z (2014) Gas adsorption on silicene: a theoretical study. Comput Mater Sci 87:218–226

    Article  CAS  Google Scholar 

  33. Mulliken R S (1955) Electronic population analysis on LCAOMO molecular wave functions. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  34. Nagarajan V, Chandiramouli R (2014) TeO 2 nanostructures as a NO sensor: DFT investigation. Comput Theor Chem:20–27

  35. Nagarajan V, Chandiramouli R (2015) DFT investigation on CO sensing characteristics of hexagonal and orthorhombic WO 3 nanostructures. Superlattices Microstruct 78:22–39

    Article  CAS  Google Scholar 

  36. Nagarajan V, Chandiramouli R (2014) DFT investigation on structural stability, electronic properties and CO adsorption characteristics on anatase and rutile TiO 2 nanostructures. Ceram Int 40:16147–16158

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiramouli, R., Srivastava, A. & Nagarajan, V. First-Principles Insights of CO Adsorption Characteristics on Ge and In Substituted Silicene Nanosheet. Silicon 9, 327–337 (2017). https://doi.org/10.1007/s12633-016-9495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9495-8

Keywords

Navigation