Skip to main content
Log in

Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A composition of NASICON (Na3Zr2Si2PO12) was synthesized by the solid-state reaction method using a new compound Na2HPO42H2O. The X-ray diffraction patterns of all samples exhibit monoclinic Na3Zr2Si2PO12 as a major phase with a very small amount of monoclinic-ZrO2. The maximum relative density (97 %) and maximum conductivity is obtained in the samples sintered at 1200 °C (N3) which is slightly higher than β-Al2O3. The activation energy is ∼ 0.20 eV for the N3 sample which is lower than for β-Al2O3. The dilatometeric study and Arrhenius plots confirmed a phase transition of NASICON from monoclinic to rhombohedral. The micro-structural study of the samples done by scanning electron microscopy (SEM) indicated a significant influence of the processing conditions on the microstructures. Raman spectroscopy demonstrated that the sample N3 exhibits minor structural changes compared to other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kida T, Morinaga N, Kishi S, An K M, Sim K W, Chae B Y, Kim J K, Ryu B K, Shimanoe K (2011) J Electrochem Acta 22:7484–7490

    Article  Google Scholar 

  2. Zhang H, Zhong T, Sun R, Liang X, Lu G (2014) RSC Adv 4:55334–55340

    Article  CAS  Google Scholar 

  3. Alpen U V, Bell M F, Wichelhaus W (1979) Mat Res Bull 14:1317–1322

    Article  Google Scholar 

  4. McEntire BJ, Miller GR, Gordon RS (1979) Proceedings Fifth International Conference, “Sintering and Related Phenomena”, (Notre Dame Indiana)p 18

  5. Anantharamulu N, Velchuri R, Sarojini T, Madhavi K, Prasad G, Vithal M (2009) Ind J Eng Mat Sci 16:347–354

    CAS  Google Scholar 

  6. Palomares V, Serras P, Villaluenga I, Hueso B K, Gonz J C, Rojo T (2012) Energy Environ Sci 5:5884–5901

    Article  CAS  Google Scholar 

  7. Horwat D, Pierson J F, Billard A (2007) Surf Coat Tech 201:7060–7065

    Article  CAS  Google Scholar 

  8. Perthuis H, Colomban Ph (2012) Ceram Int 12:39–52

    Article  Google Scholar 

  9. Yadav P, Bhatnagar MC (2012) Ceram Int 38:1731–1735

    Article  CAS  Google Scholar 

  10. Essoumhi A, Favotto C, Mansori M, Satre P (2004) J Solid State Chem 177:4475–4481

    Article  CAS  Google Scholar 

  11. Dang HY, Guo XM, Huang YP, Rong JQ (2012) Int J Miner Meta Mat 19:768–773

    Article  CAS  Google Scholar 

  12. Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR (2012) Energy Environ Sci 5:8572–8583

    Article  CAS  Google Scholar 

  13. Schucker R (2010). WO/2010/135283:PCT/US2010/035198

  14. Wang W, Jiang B, Hua L, Jiao S (2014) J Mater Chem A 2:1341–1345

    Article  CAS  Google Scholar 

  15. Paściak G, Mielcarek W, Prociów K, Warycha J (2014) Ceram Int 40:12783–12787

    Article  Google Scholar 

  16. Frank K, Kohler H, Guth U (2008). Ionics 14:363–369

    Article  CAS  Google Scholar 

  17. Obata K, Matsushima S (2010) J Ceram Soc Japan 118:213–216

    Article  CAS  Google Scholar 

  18. Fuentes RO, Lamas DG, Fernandez de Rapp ME, Figueiredo FM, Frade JR, Marques FMB, Franco JI (2004) Bull Spanish Soc Ceram Glass 43:775–779

    CAS  Google Scholar 

  19. Gordon RS, Miller GR, Mcentire BJ, Beck ED, Rasmussen JR (1981) Solid State Ionics 3 (/4):243–248

    Article  Google Scholar 

  20. Boilot JP, Salanie JP, Desplanches G, Potier DL (1979) Mat Res Bull 14:1469–1477

    Article  CAS  Google Scholar 

  21. Bayard ML, Barna GG (1978) J Electroanal Chem 91:201–209

    Article  CAS  Google Scholar 

  22. Fuentes RO, Figueiredo FM, Marques FMB, Franco JI (2001) J Euro Ceram Soc 21:737–743

    Article  CAS  Google Scholar 

  23. Ignaszak A, Pasierb P, Gajerski R, Komornicki S (2006) Mat Sci Poland 24:95–102

    CAS  Google Scholar 

  24. Fuentes RO, Figueiredo FM, Marques FMB, Franco JI (2001) Solid State Ionics 140:173–179

    Article  CAS  Google Scholar 

  25. Takahashi T, Kuwabare K, Shibata M (1980) Solid State Ionics 1:163–175

    Article  CAS  Google Scholar 

  26. Mali A, Petric A (2012) J Euro Ceram Soc 32:1229–1234

    Article  CAS  Google Scholar 

  27. Traversa E, Aono H, Sadaoka Y, Montanaro L (2000) J Electroceram 3:261–272

    Article  Google Scholar 

  28. Materials Handbook (2008) A Concise Desktop Reference, 2 nd edition by Cardarelli F, Materials & Electrochemical Research (Corporation Tucson, London Ltd):1340

  29. Chris K, Dyer K, Moseley PT, Ogumi Z, Rand DAJ, Scrosati B, Garche J (2009) Encyclopedia of Electrochemical Power Sources. Elsevier, p 4538

  30. Kang HB, Cho NH (1999) J Mat Sci 34:5005–5013

    Article  CAS  Google Scholar 

  31. Hooper A (1980) J Electroanal Chem 109:161–166

    Article  CAS  Google Scholar 

  32. Bohnke O, Ronchetti S, Mazza D (1999) Solid State Ionics 122:127–136

    Article  CAS  Google Scholar 

  33. Hooper A (1977) J Phys D Appl Phys 10:1487–1496

    Article  CAS  Google Scholar 

  34. Hudgens JJ, Brow RK, Tallant DR, Martin SW (1998) J Non Cryst Solids 223:21–31

    Article  CAS  Google Scholar 

  35. Syed KM, Pang SF, Zhang Y, Zhang YH (2013) J Chem Phy 138:024901

    Article  Google Scholar 

  36. Palanivel R, Velraj G (2007) Indian J Pure Appl Phys 45:501–508

    CAS  Google Scholar 

  37. Marzouk MA, Ouis MA, Hamdy YM (2012) Silicon 4:221–227

    Article  CAS  Google Scholar 

  38. McMillan P (1984) Am Mineral 69:622–644

    CAS  Google Scholar 

  39. Caster AG, Kowarik S, Schwartzberg AM, Nicolet O, Lim SH, Leone SR (2009) J Raman Spectrosc 40:770–774

    Article  CAS  Google Scholar 

  40. Stelling J, Behrens H, Wilke M, Gottlicher J, Aljanabi EC (2011) Geochim Cosmochim Acta 75:3542–3557

    Article  CAS  Google Scholar 

  41. Andrade JS, Pinheiro AG, Vasconcelos IF, Sasaki JM (1999) J Phys Conden Matter 11:4451–4460

    Article  Google Scholar 

  42. El-Batal FH, Khalil EM, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Silicon 2:41–47

    Article  CAS  Google Scholar 

  43. Marzouk MA, ElBatal HA, ElDin FME (2013) Silicon 5:283–295

    Article  CAS  Google Scholar 

  44. Rao GV, Shashikala HD (2014) J Adv Ceram 3:109–116

    Article  Google Scholar 

  45. Chahine A, Ettabirou M, Pascal JL (2004) Mater Lett 58:2776–2778

    Article  CAS  Google Scholar 

  46. Fang X, Ray CS, Milkankovic AM, Day DE (2001) J Non Cryst Solids 283:162–172

    Article  CAS  Google Scholar 

  47. Froehlich E, Mandeville JS, Weinert CM, Kreplak L, Riahi HAT (2011) Biomacromolecules 12:511–517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, P.K., Pandey, O.P. & Singh, K. Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte. Silicon 9, 411–419 (2017). https://doi.org/10.1007/s12633-015-9396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9396-2

Keywords

Navigation