Skip to main content

Advertisement

Log in

Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a Titanium Surface After Sandblasting

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Sandblasting (grit-blasting) is a commonly used surface treatment method for roughening the surface of titanium dental implants. Today, alumina (Al2O3) grits with various sizes are widely used for this purpose, due to their good surface roughening effects. However, sandblasting with Al2O3 grits also introduces impurities to the surface of the Ti implant, which may adversely affect the osseointegration process of the implant. This raises the question as to the use of Al2O3 as the most suitable type of sandblasting grit, considering the contaminations to the titanium implant in addition to roughening effects. This study evaluates Al2O3, a silicon-based (silica, SiO2) glass and Al metal grits in terms of both roughing effects and contamination to the titanium implant surface. Thirty commercially pure grade 2 (CP2) titanium plates were grit-blasted using various grits. Surface roughness average (R a) of all grit-blasted plate was measured. In addition, SEM/EDX analysis was performed to detect the morphology and elements on the titanium specimen surface before and after sandblasting. Results showed that each type of grits has its own advantages and disadvantages. This said, Al2O3 might be the most suitable material among the three tested grit materials for sandblasting a titanium dental implant surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo CY, Tang ATH, Matinlinna JP (2012) Insights into surface treatment methods of titanium dental implants. J Adhes Sci Technol 26:189–205

    Article  CAS  Google Scholar 

  2. Emsley J (2001) Nature’s Building Blocks: An A–Z Guide to the Elements, pp 451-453. Oxford University Press

  3. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854

    Article  Google Scholar 

  4. Guo CY, Matinlinna JP, Tang ATH (2012) Effects of surface charges on dental implants: past, present, and future. Int J Biomater: Article ID 381535, pp 5

  5. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902

    Article  CAS  Google Scholar 

  6. Carlsson L, Röstlund T, Albrektsson B, Albrektsson T (1988) Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 3:21–24

    CAS  Google Scholar 

  7. Heikkinen TT, Matinlinna JP, Vallittu PK, Lassila LVJ (2009) Dental Zirconia Adhesion with Silicon Compounds Using Some Experimental and Conventional Surface Conditioning Methods. Silicon 1:199–202

    Article  CAS  Google Scholar 

  8. Matinlinna JP, Lassila LV (2010) Experimental novel silane system in adhesion promotion between dental resin and pretreated titanium. Part II: Effect of lone-term water storage. Silicon 2:79–85

    Article  CAS  Google Scholar 

  9. Matinlinna JP, Lassila LV, Dahl JE (2010) Promotion of adhesion between resin and silica-coated titanium by silane monomers and formic acid catalyst. Silicon 2:87–93

    Article  CAS  Google Scholar 

  10. Guo CY, Matinlinna JP, Tang ATH (2012) A novel effect of sandblasting on titanium surface: static charge generation. J Adhes Sci Technol 26:2603–2613

    Article  CAS  Google Scholar 

  11. Darvell BW, Samman N, Luk WK, Clark RKF, Tideman H (1995) Contamination of titanium casting by aluminium oxide blasting. J Dent 23:319–322

    Article  CAS  Google Scholar 

  12. Placko HE, Mishra S, Weimer JJ, Lucas LC (2000) Surface characterization of titanium-based implant materials. Int J Oral Maxillofac Implants 15:355–363

    CAS  Google Scholar 

  13. Orsini G, Assenza B, Scarano A, Piatelli M, Piatelli A (2000) Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 15:779–784

    CAS  Google Scholar 

  14. Saikko V, Calonius O, Keränen J (2001) Effect of counterface roughness on the wear of conventional and crosslinked ultrahigh molecular weight polyethylene studied with a multidirectional motion pin-on-disk device. J Biomed Mater Res 57:506–512

    Article  CAS  Google Scholar 

  15. Wennerberg A (1995) The importance of surface roughness for implant incorporation. Int J Mach Tool Manu 38:657– 662

    Article  Google Scholar 

  16. Wennerberg A, Hallgren C, Johansson C, Danelli S (1998) A histomorphometric evaluation of screw implants each prepared with two surface roughnesses. Clin Oral Implants Res 9:11– 19

    Article  CAS  Google Scholar 

  17. Hruska AR, Borelli P (1991) Quality criteria for pure titanium casting, laboratory soldering, intraoral welding, and a device to aid in making uncontaminated castings. J Prosthet Dent 66: 561–565

    Article  CAS  Google Scholar 

  18. Clarson SJ (2003) Silicones and silicone-modified materials: A concise overview. ACS Symp Ser 838:1–11

    CAS  Google Scholar 

  19. Zhang M, Matinlinna JP (2012) E-glass fiber reinforced composites in dental use. Silicon 4:73–78

    Article  CAS  Google Scholar 

  20. So YC, Matinlinna JP, Tsoi JKH (2012) A new approach to cure and reinforce acrylic. Silicon 4:209–220

    Article  CAS  Google Scholar 

  21. Lung CYK, Matinlinna JP (2010) Resin bonding to silicatized zirconia with two isocyanatosilanes and cross-linking silane. Part I: Experimental. Silicon 2:153–161

    Article  CAS  Google Scholar 

  22. Gough JE, Clupper DC, Hench LL (2004) Osteoblast responses to tape-cast and sintered bioactive glass ceramics. J Biomed Mater Res 69A:621–628

    Article  CAS  Google Scholar 

  23. Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomater 25:2039–2046

    Article  CAS  Google Scholar 

  24. Thian ES, Huang J, Vickers ME, Best SM, Barber ZH, Bonfield W (2006) Silicon-substituted hydroxyapatite (SiHA): A novel calcium phosphate coating for biomedical applications. J Mater Sci 41:709–717

    Article  CAS  Google Scholar 

  25. Schulte W (1984) Intraosseous Al2O3 (Frialit) Tübingen implant. Development status after eight years. Quintessence Int 15:l– 39

    Google Scholar 

  26. Quayle AA, Cawood J, Howell RA, Eldridge DJ, Smith GA (1989) The immediate or delayed replacement of teeth by permucosal intraosseous implants: the Tübingen implant system. Part I, implant design, rationale for use and preoperative assessment. Br Dent J 166:365–370

    Article  CAS  Google Scholar 

  27. Alfrey AC (1984) Aluminium intoxication. N Engl J Med 310:1113–1115

    Article  CAS  Google Scholar 

  28. Drummond JL (1983) Degradation of ceramic materials in physiological media. In: Rubin LR (ed) Biomatetials in Reconstructive Surgery. St Louis, Mosby, pp 273–280

  29. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behavior of commercially pure titanium shot blasted with different materials and size of shot particles for dental implant applications. Biomaterials 24:263–273

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Pekka Matinlinna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C.Y., Matinlinna, J.P., Tsoi, J.KH. et al. Residual Contaminations of Silicon-Based Glass, Alumina and Aluminum Grits on a Titanium Surface After Sandblasting. Silicon 11, 2313–2320 (2019). https://doi.org/10.1007/s12633-015-9287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9287-6

Keywords

Navigation