Skip to main content
Log in

Computational Study of Octasilacubane Structural Properties with Density Functional Theory Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present study, the density functional theory method with various basis sets for optimizing and computing the structural and energetic properties of octasilacubane were performed at 298.15 K and 1 atmosphere. The data from the calculations on this compound show us the internal angles in the structure are 90 degrees. For this reason, the molecule has serious angular pressure. This angular strain is tolerated by a higher percentage of p-orbitals of silicon atoms in the Si-Si σ-bonds formation. According to calculation, σ (Si−Si) bonds in the octasilacubane system are formed from an sp3.44 d 0.02 hybrid. Also, IR and NMR spectra of the structure were simulated. The electronic chemical potential, the hardness and electrophilicity power of the molecule were obtained from frontier orbitals energies. The data show the structure has low electrophilicity. Heats of formation and detonation parameters were then calculated at studied levels of B3LYP (Becke, 3 parameter, Lee-Yang-Parr) theory. The simulation results revealed that this compound because for its high molecular weight is not a viable candidate of high energy density materials (HEDMs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eaton PE, Cole Jr. TW (1964) J Am Chem Soc 86:3157–3158

    Article  CAS  Google Scholar 

  2. Zhang M, Eaton PE, Gilardi R (401) Angew Chem Int Ed 39

  3. Jursic BS (2000) J Mol Struct 499:137–140

    Article  CAS  Google Scholar 

  4. Nagase S (1989) Angew Chem Int Ed Engl 28:329–330

    Article  Google Scholar 

  5. Unno M (2014). In: Scheschkewitz D (ed) Functional Molecular Silicon Compounds II, vol 156. Springer, Heidelberg , pp 49–84

  6. Unno M, Matsumoto H (2005). In: Auner N, Weis J (eds) Organosilicon Chemistry VI. WILEY-VCH Verlag, Weinheim, pp 373–380

  7. Matsumoto H, Higuchi K, Kyushin S, Goto M (1992) Angew Chem Int Ed Engl 31:1354–1356

    Article  Google Scholar 

  8. Matsumoto H, Higuchi K, Hoshino K, Koike H, Naoi Y, Nagai Y (1988) J Chem Soc Chem Commun 16:1083–1084

    Article  Google Scholar 

  9. Mahkam M, Nabati M, Latifpour A, Aboudi J (2014) Des Monomers Polym 17:453–457

    Article  CAS  Google Scholar 

  10. Mahkam M, Namazifar Z, Nabati M, Aboudi J (2014) Iran J Org Chem 6:1217–1220

    Google Scholar 

  11. Nabati M, Mahkam M (2014) Iran Chem Commun 2:164–169

    Google Scholar 

  12. Babler JH, Sarussi SJ (1983) J Org Chem 48:4416–4419

    Article  CAS  Google Scholar 

  13. Derrick Clive LJ, Angoh AG, Bennett SM (1987) J Org Chem 52:1339–1342

    Article  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Revision B.01 . Gaussian Inc., Wallingford. CT

    Google Scholar 

  15. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  16. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  17. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  18. Vatanparast M, Javadi N, Talemi RP, Parvini E (2014) Iran Chem Commun 2:317–326

    Google Scholar 

  19. Unno M, Matsumoto T, Mochizuki K, Higuchi K, Goto M, Matsumoto H (2003) J Organomet Chem 685:156–161

    Article  CAS  Google Scholar 

  20. Türker L (2004) J Mol Struct (Theochem) 681:15–19

    Article  Google Scholar 

  21. Glukhovtsev MN (1997) J Chem Educ 74:132–136

    Article  CAS  Google Scholar 

  22. Parr R, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  23. Koopmans TA (1933) Physica 1:104–113

    Article  CAS  Google Scholar 

  24. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  25. Kybett BD, Carroll S, Natalis P, Bonnell DW, Margrave JL, Franklin JL (1966) J Am Chem Soc 88:626–626

    Article  CAS  Google Scholar 

  26. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–25

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nabati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabati, M., Mahkam, M. Computational Study of Octasilacubane Structural Properties with Density Functional Theory Method. Silicon 8, 461–465 (2016). https://doi.org/10.1007/s12633-014-9276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9276-1

Keywords

Navigation