Skip to main content
Log in

Optical Properties and Effect of Gamma Irradiation on Bismuth Silicate Glasses Containing SrO, BaO or PbO

  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Optical and FT Infrared spectroscopic measurements have been utilized to investigate and characterize binary bismuth silicate glass together with derived samples by replacements of parts of the Bi2O3 by SrO, BaO, or PbO. This study aims to justify and compare the spectral and shielding behavior of the studied glasses containing heavy metal ions towards gamma irradiation. The study also aims to measure or calculate the optical energy band gap of these glasses. The replacements of parts of Bi2O3 by SrO, BaO or PbO caused some changes within the optical and infrared absorption spectra due to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+, Pb2+ ions. The stability of both the optical and infrared spectra of the studied bismuth silicate glass and related samples towards gamma irradiation confirm some shielding behavior of the studied glasses and their suitability as radiation shielding candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams RT, Friebele EJ (1986) In: Weber MJ (ed) Handbook of laser science and technology, section 2 radiation damage in optically transmitting crystals and glasses. CRC Press Inc, Boca Raton, pp 299–449

    Google Scholar 

  2. Lell L, Kreidl NJ, Hensler JR (1966) Radiation effects in quartz, silicate and glasses. In: Burke J (ed) Progress in ceramic science, vol 4. Pergamon Press, Oxford, pp 1–93

    Google Scholar 

  3. Bishay A (1970) Radiation induced color centres in multicomponent glasses. J Non-Cryst Solids 3:54–114

    Article  Google Scholar 

  4. Friebele EJ (1991) In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, pp 205–262

    Google Scholar 

  5. Seeber W, Ehrt D (1999) Glastech Ber Glass Sci Technol 72:295–302

    Google Scholar 

  6. Natura U, Ehrt D, Neumann K (2001) Glastech Ber Glass Sci Technol 74:23–31

    CAS  Google Scholar 

  7. Moncke D, Ehrt D (2004) Opt Mater 25:425–437

    Article  CAS  Google Scholar 

  8. Marzouk SY, Elbatal FH (2006) Nucl Inst Methods Phys Res B 248:90–102

    Article  CAS  Google Scholar 

  9. ElBatal FH, Azooz MA, Marzouk SY (2006) Phys Chem Glasses Eur J Glass Sci Technol B 47:588–597

    CAS  Google Scholar 

  10. ElBatal FH, Salem AM, Marzouk SY, Azooz MA (2007) Physica B 398:126–134

    Article  CAS  Google Scholar 

  11. ElBatal FH, Hamdy YM (2008) Trans Indian Ceramic Soc 67:193–202

    CAS  Google Scholar 

  12. ElBatal FH, Hamdy YM, Marzouk SY (2010) J Non-Cryst Solids 356:46–55

    Article  CAS  Google Scholar 

  13. ElBatal FH, Azooz MA, Ezz ElDin FM (2002) Phys Chem Glas 43:260–266

    CAS  Google Scholar 

  14. ElBatal FH (2007) Nucl Inst Methods Phys Res B 254:243–253

    Article  CAS  Google Scholar 

  15. ElBatal FH, Marzouk SY, Nada N, Desouky SM (2007) Physica B 391:88–99

    Article  CAS  Google Scholar 

  16. ElBatal FH, Marzouk MA, Abdelghany AM (2011) J Mater Sci 46:5140–5152

    Article  CAS  Google Scholar 

  17. Singh H, Singh K, Gerward L, Singh K, Sahota HS, Nathuram R (2003) Nucl Inst Methods Phys Res B 207:257–262

    Article  CAS  Google Scholar 

  18. Singh N, Singh KJ, Singh K, Singh H (2004) Nucl Inst Methods Phys Res B 225:305–309

    Article  CAS  Google Scholar 

  19. Singh KJ, Singh N, Kumdal RS, Singh K (2008) Nucl Inst Methods Phys Res 266:944–948

    Article  CAS  Google Scholar 

  20. Chimalawong P, Kaewkhao J, Limsuwan P (2010) Energy Res J 1(2):176–181

    Article  Google Scholar 

  21. Mott N, Davis E (1979) Electronic process in non-crystalline materials, 2nd edn. Clarendon Press, Oxford, p 289

    Google Scholar 

  22. Sze SM (2007) Semiconductor devices physics and technology, 3rd edn. Wiley, Canada

    Google Scholar 

  23. Urbach F (1953) Phys Rev 92:1324

    Article  CAS  Google Scholar 

  24. Sigel GH, Ginther RJ (1968) Glas Technol 9:66

    CAS  Google Scholar 

  25. Cook L, Mader KH (1982) J Amer Ceram Soc 65:597–601

    Article  CAS  Google Scholar 

  26. ElBatal FH, Azooz MA, Marzouk SY, Selim MS (2007) Physica B 398:126

    Article  CAS  Google Scholar 

  27. ElBatal FH, El Kheshen A, Azooz MA, Abo Naf SM (2008) Opt Mater 30:881–891

    Article  CAS  Google Scholar 

  28. ElBatal FH, Hamdy YM, Marzouk SY (2009) J Non-Cryst Solids 355:2439

    Article  CAS  Google Scholar 

  29. ElBatal FH, Azooz MA, ElKheshen AA (2009) Trans Indian Ceram Soc 68(2):81–90

    CAS  Google Scholar 

  30. ElBatal FH, Marzouk SY, Nada N, Desouky SM (2010) Phil Mag 90(6):675–697

    Article  CAS  Google Scholar 

  31. Duffy JA, Ingram MD (1974) Phys Chem Glas 15:34

    CAS  Google Scholar 

  32. Duffy JA (1997) Phys Chem Glas 38:289–292

    CAS  Google Scholar 

  33. Paul A (1972) Phys Chem Glas 13:14

    Google Scholar 

  34. Parke S, Webb RS (1973) J Phys Chem Solids 34:85

    Article  CAS  Google Scholar 

  35. Reisfeld J, Boehm L (1974) J Non-Cryst Solids 16:83

    Article  CAS  Google Scholar 

  36. Van Kirk SE, Martin SW (1992) J Amer Ceram Soc 75:1028

    Article  CAS  Google Scholar 

  37. Feltz A, Morr A (1985) J Non-Cryst Solids 74:313

    Article  CAS  Google Scholar 

  38. Sanz O, Aro-Ponatwski EH, Gonzzlo J, Fernandez Navarro JM (2006) J Non-Cryst Solids 352(8):761–768

    Article  CAS  Google Scholar 

  39. ElBatal FH, Marzouk MA, Abdelghany AM (2011) J Mater Sci 46:5140–5152

    Article  CAS  Google Scholar 

  40. Denker BL, Galagan BI, Shlmap IL, Sverchkov SE, Dianov EM (2011) Appl Phys B 103:681–685

    Article  CAS  Google Scholar 

  41. Ren J, Yang L, Qiu J, Chen D, Jiang X, Zhu C (2006) Solid State Commun 140:38–41

    Article  CAS  Google Scholar 

  42. Cotton AF, Wilkinson G, Murillo CA, Bockmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  43. Abo-Naf SM, Elwan RL, Marzouk MA (2012) J Mater Sci: Mater Electron 23:1022–1030

    Article  CAS  Google Scholar 

  44. Kirdsiri K, Kaewkhao J, Chanthima N, Limsuwan P (2011) Ann Nucl Energy 38:1438

    Article  CAS  Google Scholar 

  45. Chanthima N, Kaewkhao J, Limsuwan P (2012) Ann Nucl Energy 41:119

    Article  CAS  Google Scholar 

  46. Bishay A, Maghrabi C (1969) Phys Chem Glass 10:1

    CAS  Google Scholar 

  47. Dimitriev Y, Michailova V (1990) J Mater Sci Lett 9:1251

    Article  CAS  Google Scholar 

  48. Dimitriev Y, Michailova V (1992) Proc XVI Intern Cong on Glass, Madrid 3:293

  49. Stehle C, Vira C, Hogan D, Feller S, Affatigato MH (1998) Phys Chem Glas 39:83

    CAS  Google Scholar 

  50. Stentz D, George HB, Feller SA, Affatigato MA (2000) Phys Chem Glas 41:406

    CAS  Google Scholar 

  51. Malmros G (1970) Acta Chemica Scand 24:384

    Article  CAS  Google Scholar 

  52. Miyaji F, Sakka S (1991) J Non-Cryst Solids 143:77

    Article  Google Scholar 

  53. Witkowska A, Regficki J, Eicco AD (2003) J Alloys Compd 324:109

    Google Scholar 

  54. Simon V, Todea M, Takacs AF, Neumann M, Simon S (2007) Solid State Commun 141:42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzouk, M.A., ElBatal, H.A. & Ezz ElDin, F.M. Optical Properties and Effect of Gamma Irradiation on Bismuth Silicate Glasses Containing SrO, BaO or PbO. Silicon 5, 283–295 (2013). https://doi.org/10.1007/s12633-013-9160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-013-9160-4

Keywords

Navigation