Skip to main content

E-Glass Fiber Reinforced Composites in Dental Applications

Abstract

Fiber reinforced composites (FRCs) are more and more widely applied in dentistry to substitute for metallic restorations: periodontal splints, fixed partial dentures, endodontic posts, orthodontic appliances, and some other indirect restorations. In general in FRCs, the fiber reinforcement provides the composite structure with better biomechanical performance due to their superior properties in tension and flexure. Nowadays, the E-glass fiber is most frequently used because of its chemical resistance and relatively low cost. Growing interest is being paid to enhance its clinical performance. Moreover, various techniques are utilized to reinforce the adhesion between the fiber and the matrix. Oral conditions set special requirements and challenges for the clinical applications of FRCs. The biomechanical properties of dental materials are of high importance in dentistry, and given this, there is on-going scientific interest to develop E-glass fiber reinforced composite systems. FRCs are generally biocompatible and their toxicity is not a concern.

References

  1. 1.

    Mallick PK (2008) Fiber-reinforced composites: materials, manufacturing, and design, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  2. 2.

    Bunsell AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  3. 3.

    Rudo ND, Karbhari MV (1999) Dent Clin North Am 43:7

    CAS  Google Scholar 

  4. 4.

    Goldberg JA, Freilich AM, Haser AK, Audi HJ (1998) J Dent Res 77:226

    Google Scholar 

  5. 5.

    Soares CAM, Soares CMM, Freitas MJM (1999) Mechanics of composite materials and structures. Springer, New York, NY

    Google Scholar 

  6. 6.

    Li L, Li X, Zhen W (2006) English for materials science and engineering. Harbin Engineering University Press, Harbin

    Google Scholar 

  7. 7.

    Vallittu PK (2009) In: Matinlinna JP, Mittal KL (eds) Adhesion aspects in dentistry, BRILL/VSP, Leiden, The Netherlands, pp 63–74

  8. 8.

    Darvell BW (2006) Materials science for dentistry, 8th edn. B. W. Darvell, Pokfulam

    Google Scholar 

  9. 9.

    Darvell BW (2006) A glossary of terms for dental materials science, 9th edn. B. W. Darvell, Pokfulam

    Google Scholar 

  10. 10.

    Chawla KK (2001) In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, Veyssière P (eds) Encyclopedia of materials: science and technology, Pergamon, Oxford, UK, pp 3160–3167

  11. 11.

    Wiley J (1988) The fiberglass repair and construction handbook, 2nd edn. McGraw-Hill Professional, New York

    Google Scholar 

  12. 12.

    Matinlinna JP, Lassila LVJ, Özcan M, Yli-Urpo A, Vallittu PK (2004) Int J Prosthodont 17:155

    Google Scholar 

  13. 13.

    Matinlinna JP, Vallittu PK (2007) J Oral Rehabil 34:622

    Article  CAS  Google Scholar 

  14. 14.

    Matinlinna JP, Vallittu PK (2007) J Cont Dent Pract 8:1

    Google Scholar 

  15. 15.

    Zhang M, Matinlinna JP (2011) J Adhes Sci Techn. doi:10.1163/016942411x556051

  16. 16.

    Vallittu PK (2001) The second international symposium on fibre-reinforced plastics in dentistry. Nijmegen, The Netherlands

    Google Scholar 

  17. 17.

    Sperling LH (1994) In: Klemper D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks, pp 3–11

  18. 18.

    Culy G, Tyas MJ (1998) Aust Dent J 43:1

    Article  CAS  Google Scholar 

  19. 19.

    Thwe MM, Liao K (2002) Compos A 33:43

    Article  Google Scholar 

  20. 20.

    De Vekeyl RC, Majumdar AJ (1970) J Mater Sci 5:183

    Article  Google Scholar 

  21. 21.

    Matinlinna JP, Dahl JE, Karlsson S, Lassila LVJ, Vallittu PK (2009) In: Mittal KL (Ed) Silanes and other coupling agents, vol 5. BRILL/VSP, Leiden, The Netherlands, pp 107–121

  22. 22.

    Vallittu PK (2001) The second international symposium on fibre-reinforced plastics in dentistry. Nijmegen, The Netherlands

    Google Scholar 

  23. 23.

    Segerström S, Ruyter IE (2009) Dent Mater 25:845

    Article  Google Scholar 

  24. 24.

    Gale MS, Darvell BW (1999) J Dent 27:89

    Article  CAS  Google Scholar 

  25. 25.

    Blake A (1985) Handbook of mechanics, materials, and structures. Wiley-Interscience, Malden

    Google Scholar 

  26. 26.

    Datsko J, Arbor A (1997) Materials selection for design and manufacturing: theory and practice. J CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  27. 27.

    Campo EA (2008) Selection of polymeric materials: how to select design properties from different standards. Willian Andrew Inc, NY

    Google Scholar 

  28. 28.

    Lassila LVJ, Tanner J, Bell AML, Narva K, Vallittu PK (2004) Dent Mater 20:29

    Article  CAS  Google Scholar 

  29. 29.

    Vallittu PK (1998) J Prosthet Dent 82:132

    Article  Google Scholar 

  30. 30.

    Li W, Swaina MV, Li Q, Ironside J, Steven GP (2004) Biomater 25:4987

    Article  CAS  Google Scholar 

  31. 31.

    Van Noort R (2007) Introduction to dental materials, 3rd edn. Mosby, PA, USA

  32. 32.

    Oysaed H, Ruyter IE, Kleven IJS (1988) J Dent Res 67:1289

    Article  CAS  Google Scholar 

  33. 33.

    Wataha JC, Lockwood PE, Bouillaguet S, Noda M (2003) Dent Mater 19:25

    Article  CAS  Google Scholar 

  34. 34.

    Schmalz G, Arenholt-Bindslev D (2009) Biocompatibility of dental materials. Springer, New York, NY

    Google Scholar 

  35. 35.

    Willershausen B, Kottgen C, Ernst CP (2001) Eur J Med Res 6:433

    CAS  Google Scholar 

  36. 36.

    Strassler HE (2008) Inside dentistry 4, http://www.insidedentistry.net/article.php?id=832, accessed on Aug 28, 2010

  37. 37.

    Heravi F, Moazzami SM, Tahmasbi S (2007) J Dent 4:53

    Google Scholar 

  38. 38.

    Strassler HE, Serio CL (2007) Dent Clin North Am 51:507

    Article  Google Scholar 

  39. 39.

    Valiathan A, Dhar S (2006) Trends Biomater Artif Organs 20:16

    Google Scholar 

  40. 40.

    Garoushi S, Vallittu PK (2007) Libyan J Med (www.ljm.org.ly), AOP: 061206, pp 40–42

  41. 41.

    Freilich MA, Meiers JC, Duncan JP, Eckrote KA, Goldberg AJ (2002) JADA Continuing Education, American Dental Association, Chicago, USA

  42. 42.

    Feinman RA, Smidt A (1997) PP&A 9:925

    CAS  Google Scholar 

  43. 43.

    Kermanshah H, Motevasselian F (2010) Oper Dent 35:238

    Article  Google Scholar 

  44. 44.

    Behr M, Rosentritt M, Latzel D, Handel G (2003) Clin Oral Investig 7:135

    Article  CAS  Google Scholar 

  45. 45.

    Karmaker A. Fiber reinforced composite post, patent application number: 20090246738, Origin: Cincinnati, OH, USA

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jukka Pekka Matinlinna.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Zhang, M., Matinlinna, J.P. E-Glass Fiber Reinforced Composites in Dental Applications. Silicon 4, 73–78 (2012). https://doi.org/10.1007/s12633-011-9075-x

Download citation

Keywords

  • Fiber reinforced composite
  • Resin matrix
  • E-glass fiber
  • Biomechanical properties
  • Biomaterial
  • Dental material