Skip to main content

Dental Composites Reinforced with Ceramic Whiskers and Nanofibers

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Dental composites have been widely used in dentistry to restore carious (decayed) teeth, but they have limited service life due to fracture and secondary caries. To reduce secondary caries, the dental composites that contain and release various anticaries agents such fluoride, calcium phosphate (CaP), antimicrobial agents, or monomers have been investigated. In general, dental composites, particularly those releasing anticaries agents, have insufficient strength and fracture toughness. Ceramic SiC and Si3N4 whiskers and ZrO-Y2O3-SiO2 nanofibers with high strength and high toughness have been used to reinforce dental composites, which have shown 30–200 % increase in flexural strength and fracture toughness. In this chapter, we will overview the properties of these ceramic whiskers and nanofibers and their applications and limitations in dental composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Demarco FF, Correa MB, Cenci MS, Moraes RR, Opdam NJ (2012) Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 28:87

    Article  Google Scholar 

  2. Ferracane JL (2011) Resin composite – State of the art. Dent Mater 27:29

    Article  Google Scholar 

  3. National Institute of Dental and Craniofacial Research (2009) Dental resin composites and caries. NIDCR announcement # 13-DE-102

    Google Scholar 

  4. Deligeorgi V, Mjor IA, Wilson NH (2001) An overview of reasons for the placement and replacement of restorations. Prim Dent Care 8:5

    Article  Google Scholar 

  5. Frost PM (2002) An audit on the placement and replacement of restorations in a general dental practice. Prim Dent Care 9:31

    Article  Google Scholar 

  6. Mjor IA, Moorhead JE, Dahl JE (2000) Reasons for replacement of restorations in permanent teeth in general dental practice. Int Dent J 50:361

    Article  Google Scholar 

  7. Sakaguchi RL (2005) Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Dent Mater 21:3

    Article  Google Scholar 

  8. Bayne SC, Thompson JY, Swift EJ Jr, Stamatiades P, Wilkerson M (1998) An audit on the placement and replacement of restorations in a general dental practice. J Am Dent Assoc 129:567

    Article  Google Scholar 

  9. Coelho-De-Souza FH, Camacho GB, Demarco FF, Powers JM (2008) Fracture resistance and gap formation of MOD restorations: influence of restorative technique, bevel preparation and water storage. Oper Dent 33:37

    Article  Google Scholar 

  10. Drummond JL (2008) Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 87:710

    Article  Google Scholar 

  11. Lim BS, Ferracane JL, Sakaguchi RL, Condon JR (2002) Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater 18:436

    Article  Google Scholar 

  12. Lu H, Stansbury JW, Bowman CN (2005) Impact of curing protocol on conversion and shrinkage stress. J Dent Res 84:822

    Article  Google Scholar 

  13. Samuel SP, Li S, Mukherjee I, Guo Y, Patel AC, Baran G, Wei Y (2009) Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater 25:296

    Article  Google Scholar 

  14. Watts DC, Marouf AS, Al-Hindi AM (2003) Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater 19:1

    Article  Google Scholar 

  15. Xu X, Burgess JO (2003) Compressive strength, fluoride release and recharge of fluoride-releasing materials. Biomaterials 24:2451–2461

    Article  Google Scholar 

  16. Arends J, Dijkman GEHM, Dijkman AG (1995) Adv Dent Res 9:367

    Article  Google Scholar 

  17. Xu X, Burgess JO, Ding X, Ling L (2004) Fluoride-releasing compositions. US Patent 6,703,518, 9 Mar 2004

    Google Scholar 

  18. Xu X, Ling L, Ding X, Burgess JO (2004) Synthesis and characterization of a novel fluoride-releasing dimethacrylate monomer and its dental composite. J Polym Sci Part A: Polym. Chem 42:985–998

    Article  Google Scholar 

  19. Xu X, Ding X, Ling L, Burgess JO (2005) Synthesis and characterization of novel fluoride-releasing monomers 2. Dimethacrylates containing bis(aminodiacetic acid) and their ternary zirconium-fluoride complexes. J Polym Sci Part A: Polym Chem 43:3153–3166

    Article  Google Scholar 

  20. Xu X, Ling L, Wang R, Burgess JO (2006) Formulation and characterization of a novel fluoride-releasing dental composite. Dent Mater 22:1014–1023

    Article  Google Scholar 

  21. Ling L, Xu X, Choi GY, Billodeaux D, Guo G, Diwan RM (2009) Novel F-releasing composite with improved mechanical property. J Dent Res 88:83–88

    Article  Google Scholar 

  22. Wang Y, Samoei GK, Lallier TE and Xu X (2012) Synthesis and charaterization of new antibacterial fluoride-releasing monomer and dental composite. ACS Maco Letters 2(1):59–62

    Article  Google Scholar 

  23. Xu X, Shailaja J (2012) Fluoride-releasing compositions. US Patent #8,217,173, 10 July 2012

    Google Scholar 

  24. Dickens SH, Flaim GM, Takagi S (2003) Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater 19:558

    Article  Google Scholar 

  25. Langhorst SE, O'Donnell JN, Skrtic D (2009) In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater 25:884

    Article  Google Scholar 

  26. Weir MD, Chow LC, Xu HH (2012) Remineralization of demineralized enamel via calcium phosphate nanocomposite J Dent Res 91:979

    Google Scholar 

  27. Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, Antonucci JM (2010) Nano DCPA-whisker composites with high strength and Ca-PO4 release. J Dent Res 89:19

    Article  Google Scholar 

  28. Xu HH, Moreau JL, Sun L, Chow LC (2011) Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater 27:762

    Article  Google Scholar 

  29. Moreau JL, Sun L, Chow LC, Xu HH (2011) J Biomed Mater Res B Appl Biomater 98:80

    Article  Google Scholar 

  30. Xu HH, Weir MD, Sun L (2007) Dental nanocomposites with Ca-PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater 23:1482

    Article  Google Scholar 

  31. Freilich M, Meiers J, Duncan and Goldberg AJ (1999) Fiber-reinforced dental composites in clinic dentistry. Quintessence Publishing, Chicago, pp 9–21 (Chap 2)

    Google Scholar 

  32. Goldberg AJ, Burstone CJ (1992) The use of continuous fiber reinforcement in dentistry. Dent Mater 8(3):197–202

    Article  Google Scholar 

  33. Freilich MA, Karmaker AC, Burstone CJ, Goldberg AJ (1998) Development and clinical applications of a light polymerized fiber-reinforced composite. J Prosth Dent 80(3):311–318

    Article  Google Scholar 

  34. Vallittu PK (1998) Compositional and weave pattern analyses of glass fibers in dental polymer fiber composites. J Prosth Dent 7(3):170–176

    Article  Google Scholar 

  35. Ellakwa AE, Shortall AC, Shehata MK, Marquis PM (2002) Influence of bonding agent composition on flexural properties of an ultra-high molecular weight polyethylene fiber-reinforced composite. Oper Dent 27(2):184–191

    Google Scholar 

  36. Ellakwa AE, Shortall AC, Marquis PM (2002) Influence of fiber type and wetting agent on the flexural properties of an indirect fiber reinforced composite. J Prosth Dent 88(5):485–490

    Article  Google Scholar 

  37. Freilich MA, Duncan JP, Alarcon EK, Eckrote KA, Goldberg AJ (2002) The design and fabrication of fiber-reinforced implant prostheses. J Prosth Dent 88(4):449–454

    Article  Google Scholar 

  38. Eckrote KA, Burstone CJ, Freilich MA, Messer GE, Goldberg AJ (2003) Shear in flexure of fiber composites with different end supports. J Dent Res 82(4):262–266

    Article  Google Scholar 

  39. Monaco C, Ferrari M, Miceli GP, Scotti R (2003) Clinical evaluation of fiber-reinforced composite inlay FPDs. Int J Prosth 16(3):319–325

    Google Scholar 

  40. Ellakwa A, Thomas GD, Shortall AC, Marquis PM, Burke FJ (2003) Fracture resistance of fiber-reinforced composite crown restorations. Am J Dent 16(6):375–380

    Google Scholar 

  41. Behr M, Rosentritt M, Handel G (2003) Fiber-reinforced composite crowns and FPDs: a clinical report. Int J Prosth 16(3):239–243

    Google Scholar 

  42. Lassila LV, Nohrstrom T, Vallittu PK (2002) The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23(10):2221–2229

    Article  Google Scholar 

  43. Cal NE, Hersek N, Sahin E (2000) Water sorption and dimensional changes of denture base polymer reinforced with glass fibers in continuous unidirectional and woven form. Int J Prosth 13(6):487–493

    Google Scholar 

  44. Vallittu PK (2000) Effect of 180-week water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosth 13(4):334–339

    Google Scholar 

  45. Wilson DM, Visser LR (2002) High performace oxide fibers for metal and ceramic composites. In: Processing of fibers & composites conference, Barga, 22 May 2002

    Google Scholar 

  46. Kelsey WP, Latta MA, Shaddy RS, Stanislav CM (2000) Physical properties of three packable resin-composites restorative materials. Oper Dent 25:331–335

    Google Scholar 

  47. Knobloch LA, Kerby RE, Seghi R, Berlin JS, Clelland N (2002) Fracture toughness of packable and conventional composite materials. J Prosth Dent 88(3):307–313

    Article  Google Scholar 

  48. Lastumäki TM, Lassila LVJ, Vallittu PK (2001) Flexural properties of the bulk fiber-reinforced composite DC-tell used in fixed partial dentures. Int J Prosth 14(1):22–26

    Google Scholar 

  49. Xu HH, Quinn JB, Smith DT, Guiseppetti AA, Eichmiller FC (2003) Effects of different whiskers on the reinforcement of dental resin composites. Dent Mater 19:359–367

    Article  Google Scholar 

  50. Iwanaga H, Kawai C (1998) J Am Ceram Soc 81:773–776

    Article  Google Scholar 

  51. Lide DR (ed) (2001) CRC handbook of chemistry and physics, 82nd edn. CRC Press, Boca Raton

    Google Scholar 

  52. Xu HH, Martin TA, Antonucci JM, Eichmiller FC (1999) Ceramic whisker reinforcement of dental resin composites. J Dent Res 78(2):706–712

    Article  Google Scholar 

  53. Xu HH, Eichmiller FC, Antonucci JM, Flaim GM (2000) Single-crystalline ceramic whisker-reinforced carboxylic acid-resin composites with fluoride release. Oper Dent 25(2):90–97

    Google Scholar 

  54. Xu HH (2000) Whisker-reinforced heat-cured dental resin composites: effects of filler level and heat-cure temperature and time. J Dent Res 79(6):1392–1397

    Article  Google Scholar 

  55. Xu HH, Quinn JB (2001) Effect of silicon carbide whisker-silica heat treatment on the reinforcement of dental resin composites. J Biomed Mater Res 58(1):81–87

    Article  Google Scholar 

  56. Xu HH, Quinn JB, Smith DT, Antonucci JM, Schumacher GE, Eichmiller FC (2002) Dental resin composites containing silica-fused whiskers – effects of whisker-to-silica ratio on fracture toughness and indentation properties. Biomaterials 23(3):735–742

    Article  Google Scholar 

  57. Xu HH (2003) Long-term water-aging of whisker-reinforced polymer-matrix composites. J Dent Res 82(1):48–52

    Article  Google Scholar 

  58. Xu X, Guo G, Fan Y (2010) Fabrication and characterization of dense zirconia and zirconia-silica ceramic nanofibers. J Nanosci Nanotechnol 10(9):5672–5679

    Article  Google Scholar 

  59. Li S, Zhang JF, Xu X (2012) Dental composite reinforced by zirconia–silica ceramic nanofibers with improved translucency. Dent Mater 28(Suppl 1):e49–e50

    Article  Google Scholar 

  60. Guo G, Fan Y, Zhang JF, Hagan J, Xu X (2012) Novel dental composites reinforced with zirconia–silica ceramic nanofibers. Dent Mater 28:360–368

    Article  Google Scholar 

  61. Xu HH, Quinn JB, Giuseppetti AA (2004) Wear and mechanical properties of nano-silica-fused whisker composites. J Dent Res 83:930

    Article  Google Scholar 

  62. Xu HH, Sun L, Weir MD, Antonucci JM, Takagi S, Chow LC, Peltz M (2006) Nano DCPA-whisker composites with high strength and Ca-PO4 release. J Dent Res 85:722

    Article  Google Scholar 

  63. Xu HH, Weir MD, Sun L, Takagi S, Chow LC (2007) Effect of calcium phosphate nanoparticles on Ca-PO4 composites. J Dent Res 86:378

    Article  Google Scholar 

  64. Zhong S, Zhang JF, Wu R, Xu X (2013) Mechanical properties of dental composites reinforced with halloysite nanotubes. J Dent Res 92(Special Issue A). Abstract 1923

    Google Scholar 

  65. Xu X, Wu R, Zhang J, Wang Y, Costin S, Fan Y, Hagan J (2012) Antibacterial dental composites reinforced by tunicate cellulose whiskers. J Dent Res 91(Special Issue A). AADR abstract 1201

    Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Michael D. Weir, Joseph M. Antonucci, Laurence C. Chow, Gary E. Schumacher, Lei Cheng, Nancy J. Lin, Sheng Lin-Gibson, Guangqing Guo, Jan-Feng Zhang, and Yuwei Fan for discussions and experimental assistance. We would also like to thank Esstech, Ivoclar Vivadent, and Caulk/Dentsply for donating the materials. The reported studies were supported by NIH/NIDCR R01 DE17974 (HX), R21DE18349 (XX), and R01DE019203 (XX) and a seed fund from the Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry (HX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, X., Xu, H.H.K. (2014). Dental Composites Reinforced with Ceramic Whiskers and Nanofibers. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_45

Download citation

Publish with us

Policies and ethics