Skip to main content
Log in

Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances. Firstly, the experimental apparatus, methods, and theories related to the disturbance dynamics of deep, high-stress rock are reviewed, followed by the introduction of scholars’ research on deep rock deformation and failure from an energy perspective. Subsequently, with a backdrop of high-stress phenomena in deep hard rock, such as rock bursts and core disking, we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks. Thereafter, the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected. Finally, the insufficient aspects in the current research on the disturbance and failure mechanisms in deep, highly stressed rock formations are summarized, and prospects for future research are provided. This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513.

    Article  CAS  Google Scholar 

  2. H.P. Xie, J. Lu, C.B. Li, M.H. Li, and M.Z. Gao, Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review, Int. J. Min. Sci. Technol., 32(2022), No. 5, p. 915.

    Article  Google Scholar 

  3. Y. Ju, H.P. Xie, Z.M. Zheng, et al., Visualization of the complex structure and stress field inside rock by means of 3D printing technology, Chin. Sci. Bull., 59(2014), No. 36, p. 5354.

    Article  Google Scholar 

  4. Q.H. Qian, The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness, J. East China Univ. Technol. Nat. Sci., 27(2004), No. 1, p. 1.

    CAS  Google Scholar 

  5. M.C. He, Conception system and evaluation indexes for deep engineering, Chin. J. Rock Mech. Eng., 24(2005), No. 16, p. 2854.

    Google Scholar 

  6. H.P. Xie, H.W. Zhou, D.J. Xue, H.W. Wang, R. Zhang, and F. Gao, Research and consideration on deep coal mining and critical mining depth, J. China Coal Soc., 37(2012), No. 4, p. 535.

    Google Scholar 

  7. M.F. Cai, G.Y. Kong, and L.H. Jia, Criterion of energy carastrophe for rock project system failure in underground engineering, J. Univ. Sci. Technol. Beijing, 19(1997), No. 4, p. 325.

    Google Scholar 

  8. T.B. Zhao, W.Y. Guo, Y.L. Tan, C.P. Lu, and C.W. Wang, Case histories of rock bursts under complicated geological conditions, Bull. Eng. Geol. Environ., 77(2018), No. 4, p. 1529.

    Article  Google Scholar 

  9. X.Q. Liu, G. Wang, L.B. Song, G.S. Han, W.Z. Chen, and H. Chen, A new rockburst criterion of stress–strength ratio considering stress distribution of surrounding rock, Bull. Eng. Geol. Environ., 82(2023), No. 1, art. No. 29.

  10. D.Y. Li, Z.D. Liu, D.J. Armaghani, P. Xiao, and J. Zhou, Novel ensemble tree solution for rockburst prediction using deep forest, Mathematics, 10(2022), No. 5, art. No. 787.

  11. Y. Yu, G.L. Feng, C.J. Xu, B.R. Chen, D.X. Geng, and B.T. Zhu, Quantitative threshold of energy fractal dimension for immediate rock burst warning in deep tunnel: A case study, Lithosphere, 2021(2022), No. Special 4, art. No. 1699273.

  12. H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003.

    Google Scholar 

  13. Y.M. Song, Y.D. Jiang, S.P. Ma, X.B. Yang, and T.B. Zhao, Evolution of deformation fields and energy in whole process of rock failure, Rock Soil Mech., 33(2012), No. 5, p. 1352.

    Google Scholar 

  14. M.Z. Gao, M.Y. Wang, J. Xie, et al., In-situ disturbed mechanical behavior of deep coal rock, J. China Coal Soc., 45(2020), No. 8, p. 2691.

    Google Scholar 

  15. S.L. Li, X.T. Feng, Y.J. Wang, and N.G. Yang, Evaluation of rockburst proneness in a deep hard rock mine, J. Northeast Univ., 22(2001), No. 1, p. 60.

    Google Scholar 

  16. P. Li, M.F. Cai, P.T. Wang, Q.F. Guo, S.J. Miao, and F.H. Ren, Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1875.

    Article  Google Scholar 

  17. C.A. Tang, A.A.G. Webb, W.B. Moore, Y.Y. Wang, T.H. Ma, and T.T. Chen, Breaking Earth’s shell into a global plate network, Nat. Commun., 11(2020), No.1, art. No. 3621.

  18. P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705.

    Article  Google Scholar 

  19. X.Q. He, C. Zhou, D.Z. Song, et al., Mechanism and monitoring and early warning technology for rockburst in coal mines, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1097.

    Article  Google Scholar 

  20. X.B. Li, Y.J. Zuo, and C.D. Ma, Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading, Chin. J. Rock Mech. Eng., 24(2005), No. 16, p. 2814.

    Google Scholar 

  21. L.Y. Liu, L. Zhang, and H.G. Ji, Mechanism analysis of rock damage and failure based on the relation between deep chamber axial variation and in situ stress fields, Chin. J. Eng., 44(2022), No. 4, p. 516.

    Google Scholar 

  22. L.Y. Liu, H.G. Ji, T. Wang, F. Pei, and D.L. Quan, Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress, Chin. J. Eng., 42(2020), No. 6, p. 715.

    Google Scholar 

  23. T. Wang, W.W. Ye, L.Y. Liu, et al., Impact of crack inclination angle on the splitting failure and energy analysis of finegrained sandstone, Appl. Sci., 13(2023), No. 13, art. No. 7834.

  24. Z.Q. Yue, Expansion power of compressed micro fluid inclusions as the cause of rockburst, Mech. Eng., 37(2015), No. 3, p. 287.

    Google Scholar 

  25. X.T. Feng, C.X. Yang, R. Kong, et al., Excavation-induced deep hard rock fracturing: Methodology and applications, J. Rock Mech. Geotech. Eng., 14(2022), No. 1, p. 1.

    Article  Google Scholar 

  26. H. Yang, H.F. Duan, and J.B. Zhu, Ultrasonic P-wave propagation through water-filled rock joint: An experimental investigation, J. Appl. Geophys., 169(2019), p. 1.

    Article  Google Scholar 

  27. G.J. Cui, C.Q. Zhang, H. Zhou, et al., Development and application of multifunctional shear test apparatus for rock discontinuity under dynamic disturbance loading, Rock Soil Mech., 43(2022), No. 6, p. 1727.

    Google Scholar 

  28. W. Wu, H.B. Li, and J. Zhao, Dynamic responses of non-welded and welded rock fractures and implications for P-wave attenuation in a rock mass, Int. J. Rock Mech. Min. Sci., 77(2015), p. 174.

    Article  Google Scholar 

  29. W. Wu and J. Zhao, Effect of water content on P-wave attenuation across a rock fracture filled with granular materials, Rock Mech. Rock Eng., 48(2015), No. 2, p. 867.

    Article  Google Scholar 

  30. Y. Xu and F. Dai, Dynamic response and failure mechanism of brittle rocks under combined compression-shear loading experiments, Rock Mech. Rock Eng., 51(2018), No. 3, p. 747.

    Article  Google Scholar 

  31. H.B. Du, F. Dai, M.D. Wei, A. Li, and Z.L. Yan, Dynamic compression-shear response and failure criterion of rocks with hydrostatic confining pressure: An experimental investigation, Rock Mech. Rock Eng., 54(2021), No. 2, p. 955.

    Article  Google Scholar 

  32. L. Wang, M.D. Wei, and W. Wu, Control of dynamic failure of brittle rock using expansive mortar, Acta Geotech., 17(2022), No. 12, p. 5829.

    Article  Google Scholar 

  33. K.W. Xia and W. Yao, Dynamic rock tests using split Hopkinson (Kolsky) bar system–A review, J. Rock Mech. Geotech. Eng., 7(2015), No. 1, p. 27.

    Article  Google Scholar 

  34. Q.B. Zhang and J. Zhao, A review of dynamic experimental techniques and mechanical behaviour of rock materials, Rock Mech. Rock Eng., 47(2014), No. 4, p. 1411.

    Article  Google Scholar 

  35. K.W. Xia, S. Wang, Y. Xu, R. Chen, and B.B. Wu, Advances in experimental studies for deep rock dynamics, Chin. J. Rock Mech. Eng., 40(2021), No. 3, p. 448.

    Google Scholar 

  36. M.H. Ju, J.C. Li, X.F. Li, and J. Zhao, Fracture surface morphology of brittle geomaterials influenced by loading rate and grain size, Int. J. Impact Eng., 133(2019), No. C, art. No. 103363.

  37. Y.B. Wang and R.S. Yang, Study of the dynamic fracture characteristics of coal with a bedding structure based on the NSCB impact test, Eng. Fract. Mech., 184(2017), p. 319.

    Article  Google Scholar 

  38. Y.X. Zhao, S. Gong, X.J. Hao, Y. Peng, and Y.D. Jiang, Effects of loading rate and bedding on the dynamic fracture toughness of coal: Laboratory experiments, Eng. Fract. Mech., 178(2017), p. 375.

    Article  Google Scholar 

  39. D.J. Frew, S.A. Akers, W. Chen, and M.L. Green, Development of a dynamic triaxial Kolsky bar, Meas. Sci. Technol., 21(2010), No. 10, art. No. 105704.

  40. F.Q. Gong, X.F. Si, X.B. Li, and S.Y. Wang, Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar, Int. J. Rock Mech. Min. Sci., 113(2019), p. 211.

    Article  Google Scholar 

  41. B.B. Wu, R. Chen, and K.W. Xia, Dynamic tensile failure of rocks under static pre-tension, Int. J. Rock Mech. Min. Sci., 80(2015), p. 12.

    Article  Google Scholar 

  42. W. Yao, K. Xia, and T. Zhang, Dynamic fracture test of Laurentian granite subjected to hydrostatic pressure, Exp. Mech., 59(2019), No. 2, p. 245.

    Article  CAS  Google Scholar 

  43. S.L. Xu, J.F. Shan, L. Zhang, et al., Dynamic compression behaviors of concrete under true triaxial confinement: An experimental technique, Mech. Mater., 140(2020), art. No. 103220.

  44. K. Liu, Q.B. Zhang, G. Wu, J.C. Li, and J. Zhao, Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar, Rock Mech. Rock Eng., 52(2019), No. 7, p. 2175.

    Article  Google Scholar 

  45. Z.L. Zhou, X. Cai, X.B. Li, W.Z. Cao, and X.M. Du, Dynamic response and energy evolution of sandstone under coupled static-dynamic compression: Insights from experimental study into deep rock engineering applications, Rock Mech. Rock Eng., 53(2020), No. 3, p. 1305.

    Article  Google Scholar 

  46. H.B. Du, F. Dai, Y. Liu, Y. Xu, and M.D. Wei, Dynamic response and failure mechanism of hydrostatically pressurized rocks subjected to high loading rate impacting, Soil Dyn. Earthquake Eng., 129(2020), art. No. 105927.

  47. X.S. Shi, D.A. Liu, W. Yao, et al, Investigation of the anisotropy of black shale in dynamic tensile strength, Arabian J. Geosci., 11(2018), No. 2, art. No. 42.

  48. W. Yao, K.W. Xia, and A.K. Jha, Experimental study of dynamic bending failure of Laurentian granite: Loading rate and pre-load effects, Can. Geotech. J., 56(2019), No. 2, p. 228.

    Article  Google Scholar 

  49. U.S. Lindholm, L.M. Yeakley, and A. Nagy, A Study of the Dynamic Strength and Fracture Properties of Rock, Southwest Research Institute, San Antonio, 1972.

    Google Scholar 

  50. U.S. Lindholm, L.M. Yeakley, and A. Nagy, The dynamic strength and fracture properties of dresser basalt, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 11(1974), No. 5, p. 181.

    Article  Google Scholar 

  51. J. Jr Lankford, Dynamic strength of oil shale, Soc. Petrol. Eng. J., 16(1976), No. 01, p. 17.

    Article  Google Scholar 

  52. K. Sato, M. Kawakita, and S. Kinoshita, The dynamic fracture properties of rocks under confining pressure, Mem. Fac. Eng. Hokkaido Univ., 15(1981), No. 4, p. 467.

    Google Scholar 

  53. L.E. Malvern, and C.A. Ross, Dynamic response of concrete and concrete structures, [in] First Annual Technical Report, AFOSR, 1984.

  54. C. Albertini and M. Montagnani, Study of the true tensile stress–strain diagram of plain concrete with real size aggregate; need for and design of a large Hopkinson bar bundle, J. Phys. IV, 4(1994), No. C8, p. C8–113.

    Google Scholar 

  55. W. Chen and G. Ravichandran, Dynamic compressive behaviour of ceramics under lateral confinement, J. Phys. IV, 4(1994), No. C8, p. C8–177.

    Google Scholar 

  56. W. Chen and F. Lu, A technique for dynamic proportional multiaxial compression on soft materials, Exp. Mech., 40(2000), No. 2, p. 226.

    Article  Google Scholar 

  57. E. Hanina, D. Rittel, and Z. Rosenberg, Pressure sensitivity of adiabatic shear banding in metals, Appl. Phys. Lett., 90(2007), No. 2, art. No. 021915.

  58. X.B. Li, Z.L. Zhou, T.S. Lok, L. Hong, and T.B. Yin, Innovative testing technique of rock subjected to coupled static and dynamic loads, Int. J. Rock Mech. Min. Sci., 45(2008), No. 5, p. 739.

    Article  Google Scholar 

  59. E. Cadoni and C. Albertini, Modified Hopkinson bar technologies applied to the high strain rate rock tests, [in] Y.X. Zhou and J. Zhao eds., Advances in Rock Dynamics and Applications, 1st ed., CRC Press, 2011, p. 79.

  60. Q. Fang, Z. Ruan, C.C. Zhai, X.Q. Jiang, L. Chen, and W.M. Fang, Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature, Chin. J. Rock Mech. Eng., 31(2012), No. 9, p. 1756.

    Google Scholar 

  61. Z.L. Zhou, X.B. Li, Y. Zou, Y.H. Jiang, and G.N. Li, Dynamic Brazilian tests of granite under coupled static and dynamic loads, Rock Mech. Rock Eng., 47(2014), No. 2, p. 495.

    Article  Google Scholar 

  62. J. Zhao, P.G. Ranjith, N. Khalili, et al., Three Dimensionally Compressed and Monitored Hopkinson Bar, ARC Linkage Infrastructure, Australian, 2015, LE150100058. https://data-portal.arc.gov.au/NCGP/Web/Grant/Grant/LE150100058

  63. R. Chen, K. Li, K.W. Xia, Y.L. Lin, W. Yao, and F.Y. Lu, Dynamic fracture properties of rocks subjected to static pre-load using notched semi-circular bend method, Rock Mech. Rock Eng., 49(2016), No. 10, p. 3865.

    Article  Google Scholar 

  64. B.B. Wu, W. Yao, and K.W. Xia, An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement, Rock Mech. Rock Eng., 49(2016), No. 10, p. 3855.

    Article  Google Scholar 

  65. R. Chen, W. Yao, F. Lu, and K. Xia, Evaluation of the stress equilibrium condition in axially constrained triaxial SHPB tests, Exp. Mech., 58(2018), No. 3, p. 527.

    Article  Google Scholar 

  66. W.C. Zhu, S.H. Li, S. Li, and L.L. Niu, Influence of dynamic disturbance on the creep of sandstone: An experimental study, Rock Mech. Rock Eng., 52(2019), No. 4, p. 1023.

    Article  Google Scholar 

  67. W. Wang, S.W. Zhang, K. Liu, S. Wang, D.Y. Li, and H.M. Li, Experimental study on dynamic strength characteristics of water-saturated coal under true triaxial static-dynamic combination loadings, Chin. J. Rock Mech. Eng., 38(2019), No. 10, p. 2010.

    Google Scholar 

  68. Y.B. Li, Y. Zhai, C.S. Wang, F.D. Meng, and M. Lu, Mechanical properties of Beishan granite under complex dynamic loads after thermal treatment, Eng. Geol., 267(2020), art. No. 105481.

  69. H.B. Du, F. Dai, Y. Xu, Z.L. Yan, and M.D. Wei, Mechanical responses and failure mechanism of hydrostatically pressurized rocks under combined compression-shear impacting, Int. J. Mech. Sci., 165(2020), art. No. 105219.

  70. S.M. Wang, X.R. Xiong, Y.S. Liu, et al., Stress–strain relationship of sandstone under confining pressure with repetitive impact, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 2, art. No. 39.

  71. W. Yao, X. Li, K.W. Xia, and M. Hokka, Dynamic flexural failure of rocks under hydrostatic pressure: Laboratory test and theoretical modeling, Int. J. Impact Eng., 156(2021), art. No. 103946.

  72. Q.Q. Zhu, D.Y. Li, and W.J. Wang, Mechanical behavior and permeability evolution of sandstone with confining pressure after dynamic loading, Geomech. Geophys. Geo-Energy Geo-Resour., 7(2021), No. 3, art. No. 81.

  73. Y. Xue, X.H. Liu, R. Zhao, Y. Zheng, and X. Gui, Investigation on triaxial dynamic model based on the energy theory of bedding coal rock under triaxial impact compression, Shock Vib., 2021(2021), art. No. 5537341.

  74. G.L. Zhao, X. Li, Y. Xu, and K.W. Xia, A modified triaxial split Hopkinson pressure bar (SHPB) system for quantifying the dynamic compressive response of porous rocks subjected to coupled hydraulic-mechanical loading, Geomech. Geophys. Geo-Energy Geo-Resour., 8(2022), No. 1, art. No. 29.

  75. W. You, F. Dai, Y. Liu, and Z.L. Yan, Effect of confining pressure and strain rate on mechanical behaviors and failure characteristics of sandstone containing a pre-existing flaw, Rock Mech. Rock Eng., 55(2022), No. 4, p. 2091.

    Article  Google Scholar 

  76. C. Ma, C.J. Zhu, J.X. Zhou, J. Ren, and Q. Yu, Dynamic response and failure characteristics of combined rocks under confining pressure, Sci. Rep., 12(2022), No. 1, art. No. 12187.

  77. T. Li, G. Li, Y.Q. Ding, et al., Impact response of unsaturated sandy soil under triaxial stress, Int. J. Impact Eng., 160(2022), art. No. 104062.

  78. N. Luo, X.R. Fan, X.L. Cao, C. Zhai, and T. Han, Dynamic mechanical properties and constitutive model of shale with different bedding under triaxial impact test, J. Petrol. Sci. Eng., 216(2022), art. No. 110758.

  79. W.B. Fan, J.W. Zhang, Y. Yang, Y. Zhang, X.K. Dong, and Y.L. Xing, Study on the mechanical behavior and constitutive model of layered sandstone under triaxial dynamic loading, Mathematics, 11(2023), No. 8, art. No. 1959.

  80. J. Wei, H.L. Liao, N. Li, et al., Effect of the three-dimensional static pre-stress on the dynamic behaviours of conglomerate: True triaxial Hopkinson pressure bar tests, Geoenergy Sci. Eng., 227(2023), art. No. 211810.

  81. X.K. Xie, J.C. Li, and Y.L. Zheng, Experimental study on dynamic mechanical and failure behavior of a jointed rock mass, Int. J. Rock Mech. Min. Sci., 168(2023), art. No. 105415.

  82. X.Y. Wang, Z.Y. Liu, X.C. Gao, P.F. Li, and B. Dong, Dynamic characteristics and energy evolution of granite subjected to coupled static–cyclic impact loading, Geomech. Geophys. Geo-Energy Geo-Resour., 9(2023), No. 1, art. No. 62.

  83. X.T. Feng, Y. Yu, G.L. Feng, Y.X. Xiao, B.R. Chen, and Q. Jiang, Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep, hard rock tunnels, Tunnelling Underground Space Technol., 51(2016), p. 98.

    Article  Google Scholar 

  84. L.Y. Li, Z.Q. Xu, H.P. Xie, Y. Ju, X. Ma, and Z.C. Han, Failure experimental study on energy laws of rock under differential dynamic impact velocities, J. China Coal Soc., 36(2011), No. 12, p. 2007.

    Google Scholar 

  85. B.J. Xie, D.H. Ai, and Y. Yang, Crack detection and evolution law for rock mass under SHPB impact tests, Shock Vib., 2019(2019), art. No. 3956749.

  86. J.Y. Xu and S. Liu, Analysis of energy dissipation rule during deformation and fracture process of rock under high temperatures in SHPB test, Chin. J. Rock Mech. Eng., 32(2013), No. S2, art. No. 3109.

  87. J. Zhu, J.H. Deng, P. Wang, Z.G. Fu, R.Y.S. Pak, and W.Y. Zhao, Mechanical behavior and failure mechanism of rocks under impact loading: The coupled effects of water saturation and rate dependence, Int. J. Geomech., 23(2023), No. 11, art. No. 04023196.

  88. D.Y. Wu, L.Y. Yu, T. Zhang, et al., Energy dissipation characteristics of high-temperature granites after water-cooling under different impact loadings, J. Cent. South Univ., 30(2023), No. 3, p. 992.

    Article  Google Scholar 

  89. X.S. Zhang, L.J. Ma, Z.M. Zhu, L. Zhou, M. Wang, and T. Peng, Experimental study on the energy evolution law during crack propagation of cracked rock mass under impact loads, Theor. Appl. Fract. Mech., 122(2022), art. No. 103579.

  90. Y. Zhai, F.D. Meng, Y.B. Li, Y. Li, R.F. Zhao, and Y.S. Zhang, Research on dynamic compression failure characteristics and damage constitutive model of sandstone after freeze–thaw cycles, Eng. Fail. Anal., 140(2022), art. No. 106577.

  91. S.G. Chen, H.M. Zhang, L. Wang, et al., Experimental study on the impact disturbance damage of weakly cemented rock based on fractal characteristics and energy dissipation regulation, Theor. Appl. Fract. Mech., 122(2022), art. No. 103665.

  92. X.B. Li, Z.L. Zhou, Z.Y. Ye, et al., Study of rock mechanical characteristics under coupled static and dynamic loads, Chin. J. Rock Mech. Eng., 27(2008), No. 7, p. 1387.

    Google Scholar 

  93. P. Asadi and A. Fakhimi, Bonded particle modeling of grain size effect on tensile and compressive strengths of rock under static and dynamic loading, Adv. Powder Technol., 34(2023), No. 5, art. No. 104013.

  94. L.Y. Liu, Z. Zhang, T. Wang, S. Zhi, and J. Wang, Evolution characteristics of fracture volume and acoustic emission entropy of monzogranite under cyclic loading, Geomech. Geophys. Geo-Energy Geo-Resour., 10(2024), No.1, art. No. 16.

  95. Y.H. Li, J.Y. Peng, F.P. Zhang, and Z.G. Qiu, Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading, Eng. Geol., 213(2016), p. 64.

    Article  Google Scholar 

  96. K. Zhang, S. Zhang, J.X. Ren, M. Wang, S. Jing, and W.J. Zhang, Study on characteristics of acoustic emission b value of coal rock with outburst-proneness under coupled static and dynamic loads, Shock Vib., 2023(2023), art. No. 2400632.

  97. Q.G. Chen, Y.J. Zuo, J.Y. Lin, B. Chen, and L.J. Zheng, Numerical research on response characteristics of surrounding rock for deep layered clastic rock roadway under static and dynamic loading conditions, Geomech. Geophys. Geo-Energy Geo-Resour., 8(2022), No. 3, art. No. 91.

  98. F. Xiao, D. Jiang, F. Wu, et al., Effects of prior cyclic loading damage on failure characteristics of sandstone under true-triaxial unloading conditions, Int. J. Rock Mech. Min. Sci., 132(2020), art. No. 104379.

  99. X.B. Li, K. Du, and D.Y. Li, True triaxial strength and failure modes of cubic rock specimens with unloading the minor principal stress, Rock Mech. Rock Eng., 48(2015), No. 6, p. 2185.

    Article  Google Scholar 

  100. C.L. Dong, C.T. Fan, X.Y. Lu, G.M. Zhao, M.J. Qi, and R.H. Qin, Mechanical and energy evolution characteristics of sandstone under true triaxial cyclic loading, Appl. Sci., 13(2023), No. 12, art. No. 7230.

  101. H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, Chin. J. Rock Mech. Eng., 24(2005), No. 15, p. 2603.

    Google Scholar 

  102. Z.M. Zheng, Y. Yang, and C. Pan, The nonlinear energy model and stress-strain model of sandstone, Sci. Rep., 13(2023), No. 1, art. No. 8456.

  103. T.B. Zhou, Y.P. Qin, J. Cheng, X.Y. Zhang, and Q.F. Ma, Study on damage evolution model of sandstone under triaxial loading and postpeak unloading considering nonlinear behaviors, Geofluids, 2021(2021), art. No. 2395789.

  104. R.D. Peng, H.P. Xie, and Y. Ju, Analysis of energy dissipation and damage evolution of sandstone during tensile process, Chin. J. Rock Mech. Eng., 26(2007), No. 12, p. 2526.

    Google Scholar 

  105. R.D. Peng, Y. Ju, F. Gao, H.P. Xie, and P. Wang, Energy analysis on damage of coal under cyclical triaxial loading and unloading conditions, J. China Coal Soc., 39(2014), No. 2, p. 245.

    Google Scholar 

  106. R.Q. Huang and D. Huang, Study on deformation characteristics and constitutive model of rock on the condition of unloading, Adv. Earth Sci., 23(2008), No. 5, p. 441.

    Google Scholar 

  107. J.X. Ren, X.R. Ge, Y.B. Pu, W. Ma, and Y.L. Zhu, Primary study of real-time ct testing of unloading damage evolution law of rock, Chin. J. Rock Mech. Eng., 19(2000), No. 6, p. 697.

    Google Scholar 

  108. M.C. He, J.L. Miao, D.J. Li, and C.G. Wang, Experimental study on rockburst processes of granite specimen at great depth, Chin. J. Rock Mech. Eng, 26(2007), No. 5, p. 865.

    Google Scholar 

  109. W.D. Ortlepp and T.R. Stacey, Rockburst mechanisms in tunnels and shafts, Tunnelling Underground Space Technol., 9(1994), No. 1, p. 59.

    Article  Google Scholar 

  110. T. Wang, Z.S. Liu, and L.Y. Liu, Investigating a three-dimensional convolution recognition model for acoustic emission signal analysis during uniaxial compression failure of coal, Geomatics Nat. Hazards Risk, 15(2024), No. art. No. 2322483.

  111. Z.Q. Jia, H.P. Xie, R. Zhang, et al., Acoustic emission characteristics and damage evolution of coal at different depths under triaxial compression, Rock Mech. Rock Eng., 53(2020), No. 5, p. 2063.

    Article  Google Scholar 

  112. X.L. Li, S.J. Chen, E.Y. Wang, and Z.H. Li, Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response, Eng. Fail. Anal., 124(2021), art. No. 105396.

  113. X.J. Feng, Z. Ding, Y.Q. Ju, Q.M. Zhang, and M. Ali, “Double peak” of dynamic strengths and acoustic emission responses of coal masses under dynamic loading, Nat. Resour. Res., 31(2022), No. 3, p. 1705.

    Article  Google Scholar 

  114. Q. Ma, X.L. Liu, Y.L. Tan, et al., Numerical study of mechanical properties and microcrack evolution of double-layer composite rock specimens with fissures under uniaxial compression, Eng. Fract. Mech., 289(2023), art. No. 109403.

  115. J.L. Liu, S.Y. Cao, Y.X. Zou, and Z.J. Song, EBSD analysis of rock fabrics and its application, Geol. Bull. China, 27(2008), No. 10, p. 1638.

    CAS  Google Scholar 

  116. C.Q. Chu, S.C. Wu, C.J. Zhang, and Y.L. Zhang, Microscopic damage evolution of anisotropic rocks under indirect tensile conditions: Insights from acoustic emission and digital image correlation techniques, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1680.

    Article  Google Scholar 

  117. S.Y. Cao and J.L. Liu, Modern techniques for the analysis of rock microstructure: EBSD and its application, Adv. Earth Sci., 21(2006), No. 10, p. 1091.

    Google Scholar 

  118. M. Alam, J.P. Parmigiani, and J.J. Kruzic, An experimental assessment of methods to predict crack deflection at an interface, Eng. Fract. Mech., 181(2017), p. 116.

    Article  Google Scholar 

  119. E.Y. Sun, P.F. Becher, K.P. Plucknett, et al., Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives, J. Am. Ceram. Soc., 81(1998), No. 11, p. 2831.

    Article  CAS  Google Scholar 

  120. G.X. Jiang, Z.X. Liu, D.H. Wei, and W. Qu, X-Ray Petrofabrics, Geology Press, Beijing, 1997.

    Google Scholar 

  121. D.J. Prior, A.P. Boyle, F. Brenker, et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks, Am. Mineral., 84(1999), No. 11–12, p. 1741.

    Article  CAS  Google Scholar 

  122. P. Yang, Electron Backscatter Diffraction Technique and Its Applications, Metallurgy Industry Press, Beijing, 2007.

    Google Scholar 

  123. T. Wang, W.W. Ye, Y.M. Tong, N.S. Jiang, and L.Y. Liu, Residual stress measurement and analysis of siliceous slate-containing quartz veins, Int. J. Miner. Metall. Mater., 30(2023), No. 12, p. 2310.

    Article  Google Scholar 

  124. T.K. Tan and W.F. Kang, Locked in stresses, creep and dilatancy of rocks, and constitutive equations, Rock Mech., 13(1980), No. 1, p. 5.

    Article  Google Scholar 

  125. B. Brady and E.T. Brown, Rock Mechanics for Underground Mining, 3rd ed., Springer Science & Business Media, Berlin, 2006.

    Google Scholar 

  126. Q.H. Qian and X.P. Zhou, Effects of incompatible deformation on failure mode and stress field of surrounding rock mass, Chin. J Rock. Mech. Eng., 32(2013), No. 4, p. 649.

    Google Scholar 

  127. S.J. Wang, Geological nature of rock and its deduction for rock mechanics, Chin. J Rock. Mech. Eng. 28(2009), No. 3, p. 433.

    Google Scholar 

  128. K. Sekine and K. Hayashi, Residual stress measurements on a quartz vein: A constraint on paleostress magnitude, J. Geophys. Res.: Solid Earth, 114(2009), No. B1, art. No. B01404.

  129. X. Zhong, H.Z. Wang, L.F. Feng, et al., The geological application of elastic geo-thermobarometry: Example of quartz-in-garnet (QuiG) barometry, Acta Petrol. Sin., 38(2022), No. 10, p. 2933.

    Article  Google Scholar 

  130. X.Y. Gao, M. Xia, S.Y. Zhou, and S.X. Wang, Principle and geological applicability of the Raman elastic geothermobarometry for mineral inclusion systems, Acta Petrol. Sin., 37(2021), No. 4, p. 974.

    Article  Google Scholar 

  131. L.R. Alejano, G. Walton, and S. Gaines, Residual strength of granitic rocks, Tunnelling Underground Space Technol., 118(2021), art. No. 104189.

  132. F. Li, S. You, H.G. Ji, and H. Wang, Study of damage constitutive model of brittle rocks considering stress dropping characteristics, Adv. Civ. Eng., 2020(2020), art. No. 8875029.

  133. P. Xiao, D.Y. Li, G.Y. Zhao, and H.X. Liu, New criterion for the spalling failure of deep rock engineering based on energy release, Int. J. Rock Mech. Min. Sci., 148(2021), art. No. 104943.

  134. S.Q. Ye, J.N. Li, J. Xie, B.G. Yang, H.C. Hao, and F. Li, Exploration on formation mechanism of core discing based on energy analysis, Geofluids, 2022(2022), art. No. 9719509.

  135. F.Q. Gong, J.Y. Yan, S. Luo, and X.B. Li, Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression, Rock Mech. Rock Eng., 52(2019), No. 11, p. 4237.

    Article  Google Scholar 

  136. F.Q. Gong, J.Y. Yan, X.B. Li, and S. Luo, A peak-strength strain energy storage index for rock burst proneness of rock materials, Int. J. Rock Mech. Min. Sci., 117(2019), p. 76.

    Article  Google Scholar 

  137. F.Q. Gong, S. Luo, and J.Y. Yan, Energy storage and dissipation evolution process and characteristics of marble in three tension-type failure tests, Rock Mech. Rock Eng., 51(2018), No. 11, p. 3613.

    Article  Google Scholar 

  138. S. Luo, F.Q. Gong, L.L. Li, and K. Peng, Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressures, Trans. Nonferrous Met. Soc. China, 33(2023), No. 7, p. 2168.

    Article  Google Scholar 

  139. J.B. Zhu, Z.Y. Liao, and C.A. Tang, Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses, Rock Mech. Rock Eng., 49(2016), No. 10, p. 3935.

    Article  Google Scholar 

  140. C.Y. Liang, X. Li, and S.R. Wu, Research on energy characteristics of size effect of granite under low/intermediate strain rates, Rock Soil Mech., 37(2016), No. 12, p. 3472.

    Google Scholar 

  141. H.P. Xie, Y. Ju, L.Y. Li, and R.D. Peng, Energy mechanism of deformation and failure of rock masses, Chin. J. Rock Mech. Eng., 27(2008), No. 9, p. 1729.

    Google Scholar 

  142. C. Zhao, K. Wu, S.C. Li, and J.Q. Zhao, Energy characteristics and damage deformation of rock subjected to cyclic loading, Chin. J. Rock Mech. Eng., 35(2013), No. 5, p. 890.

    Google Scholar 

  143. H.P. Xie, H.W. Zhou, J.F. Liu, et al., Mining-induced mechanical behavior in coal seams under different mining layouts, J. China Coal Soc., 36(2011), No. 7, p. 1067.

    Google Scholar 

  144. Z.Z. Zhang and F. Gao, Confining pressure effect on rock energy, Chin. J. Rock Mech. Eng., 34(2015), No.1, p. 1.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52004015, 51874014, and 52311530070), the fellowship of China National Postdoctoral Program for Innovative Talents (No. BX2021033), the fellowship of China Postdoctoral Science Foundation (Nos. 2021M700389 and 2023T0025), and the Fundamental Research Funds for the Central Universities of China (No. FRF-IDRY-20-003, Interdisciplinary Research Project for Young Teachers of USTB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Liu.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ye, W., Liu, L. et al. Disturbance failure mechanism of highly stressed rock in deep excavation: Current status and prospects. Int J Miner Metall Mater 31, 611–627 (2024). https://doi.org/10.1007/s12613-024-2864-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-024-2864-1

Keywords

Navigation