Skip to main content
Log in

Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO3 solution

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe (β-CEZ) alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance. Electrochemical machining (ECM) is an efficient and low-cost technology for manufacturing the β-CEZ alloy. In ECM, the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials. In this study, the electrochemical dissolution behaviors of the β-CEZ and Ti-6Al-4V (TC4) alloys in NaNO3 solution are discussed. The open circuit potential (OCP), Tafel polarization, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and current efficiency curves of the β-CEZ and TC4 alloys are analyzed. The results show that, compared to the TC4 alloy, the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for the β-CEZ alloy. Moreover, the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed. Under low current densities, the β-CEZ alloy surface comprises dissolution pits and dissolved products, while the TC4 alloy surface comprises a porous honeycomb structure. Under high current densities, the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than the β-CEZ alloy surface. Finally, the electrochemical dissolution models of β-CEZ and TC4 alloys are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.Y. Xu, J. Liu, D. Zhu, N.S. Qu, X.L. Wu, and X.Z. Chen, Electrochemical machining of burn-resistant Ti40 alloy, Chin. J. Aeronaut., 28(2015), No. 4, p. 1263.

    Article  Google Scholar 

  2. F. Klocke, D. Welling, and J. Dieckmann, Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components, Procedia Eng. 19(2011), p. 184.

    Article  CAS  Google Scholar 

  3. D.J. Zhai, T. Qiu, J. Shen, and K.Q. Feng, Growth kinetics and mechanism of microarc oxidation coating on Ti-6Al-4V alloy in phosphate/silicate electrolyte, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1991.

    Article  CAS  Google Scholar 

  4. L. Lan, R.Y. Xin, X.Y. Jin, S. Gao, and B. He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti-6Al-4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1780.

    Article  CAS  Google Scholar 

  5. J. Luo, B. Wu, and M.Q. Li, 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 122.

    Article  CAS  Google Scholar 

  6. T. Grosdidier, C. Roubaud, M.J. Philippe, and Y. Combres, The deformation mechanisms in the β-metastable β-Cez titanium alloy, Scripta Mater., 36(1997), No. 1, p. 21.

    Article  CAS  Google Scholar 

  7. C. Sauer and G. Luetjering, Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties, J. Mater. Process. Technol., 117(2001), No. 3, p. 311.

    Article  CAS  Google Scholar 

  8. J.O. Peters and G. Lütjering, Microstructure and fatigue properties of the β-titanium alloy β-Cez, Int. J. Mater. Res., 89(2021), No. 7, p. 464.

    Google Scholar 

  9. F.Z. Benlahreche, E. Nouicer, L. Yahia, and A. Nouicer, Corrosion behavior of nitrided titanium alloy β-CEZ and 9S20K carbon steel, Phys. Met. Metallogr., 123(2022), No. 6, p. 609.

    Article  CAS  Google Scholar 

  10. E.O. Ezugwu and Z.M. Wang, Titanium alloys and their machinability—A review, J. Mater. Process. Technol., 68(1997), No. 3, p. 262.

    Article  Google Scholar 

  11. J. Sun and Y.B. Guo, A comprehensive experimental study on surface integrity by end milling Ti-6Al-4V, J. Mater. Process. Technol., 209(2009), No. 8, p. 4036.

    Article  CAS  Google Scholar 

  12. K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, and A. De Silva, New developments in electro-chemical machining, CIRP Ann., 48(1999), No. 2, p. 567.

    Article  Google Scholar 

  13. Z.Y. Xu and Y.D. Wang, Electrochemical machining of complex components of aero-engines: Developments, trends, and technological advances, Chin. J. Aeronaut., 34(2021), No. 2, p. 28.

    Article  Google Scholar 

  14. A.D. Davydov, T.B. Kabanova, and V.M. Volgin, Electrochemical machining of titanium. review, Russ. J. Electrochem., 53(2017), No. 9, p. 941.

    Article  CAS  Google Scholar 

  15. F. Klocke, M. Zeis, A. Klink, and D. Veselovac, Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components, Procedia CIRP, 6(2013), p. 368.

    Article  Google Scholar 

  16. D.Y. Wang, Z.W. Zhu, N.F. Wang, D. Zhu, and H.R. Wang, Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution, Electrochim. Acta, 156(2015), p. 301.

    Article  CAS  Google Scholar 

  17. D. Zhu, L.G. Yu, and R.H. Zhang, Dissolution effects with different microstructures of inconel 718 on surface integrity in electrochemical machining, J. Electrochem. Soc., 165(2018), No. 16, p. E872.

    Article  CAS  Google Scholar 

  18. X.K. Yue, N.S. Qu, X. Ma, and H.S. Li, Anodic electrochemical behaviors of in situ synthesized (TiB+TiC)/Ti6Al4V composites in NaNO3 and NaCl electrolyte, Corros. Sci., 204(2022), art. No. 110379.

  19. W.J. Cao, D.Y. Wang, G.W. Cui, and D. Zhu, Anodic dissolution mechanism of TA15 titanium alloy during counter-rotating electrochemical machining, Sci. China Technol. Sci., 65(2022), No. 6, p. 1253.

    Article  CAS  Google Scholar 

  20. W.D. Liu, S.S. Ao, Y. Li, et al., Effect of anodic behavior on electrochemical machining of TB6 titanium alloy, Electrochim. Acta, 233(2017), p. 190.

    Article  CAS  Google Scholar 

  21. Y.D. Wang, Z.Y. Xu, D.M. Meng, and Z. Wang, Obtaining high surface quality in electrochemical machining of TC17 titanium alloy and inconel 718 with high current densities in NaNO3 solution, J. Electrochem. Soc., 168(2021), No. 7, art. No. 073502.

  22. Y.D. Wang, Z.Y. Xu, and A. Zhang, Comparison of the electrochemical dissolution behavior of extruded and casted Ti-48Al-2Cr-2Nb alloys in NaNO3 solution, J. Electrochem. Soc., 166(2019), No. 12, art. No. E347.

  23. Y.D. Wang, Z.Y. Xu, and A. Zhang, Anodic characteristics and electrochemical machining of two typical γ-TiAl alloys and its quantitative dissolution model in NaNO3 solution, Electrochim. Acta, 331(2020), art. No. 135429.

  24. M. Weinmann, M. Stolpe, O. Weber, R. Busch, and H. Natter, Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 19(2015), No. 2, p. 485.

    Article  CAS  Google Scholar 

  25. D. Baehre, A. Ernst, K. Weißhaar, H. Natter, M. Stolpe, and R. Busch, Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Procedia CIRP, 42(2016), p. 137.

    Article  Google Scholar 

  26. J.Q. Li, X. Lin, P.F. Guo, M.H. Song, and W.D. Huang, Electrochemical behaviour of laser solid formed Ti-6Al-4V alloy in a highly concentrated NaCl solution, Corros. Sci., 142(2018), p. 161.

    Article  CAS  Google Scholar 

  27. M. Tak, S. Singh, and R.G. Mote, Effect of microstructure on electrochemical dissolution characteristics of titanium alloys in electrochemical micromachining, Procedia Manuf., 34(2019), p. 362.

    Article  Google Scholar 

  28. Y.W. Cui, L.Y. Chen, Y.H. Chu, et al., Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti-6Al-4V in NaCl solutions with different concentrations, Corros. Sci., 215(2023), art. No. 111017.

  29. Y.C. Ge, Z.W. Zhu, and D.Y. Wang, Electrochemical dissolution behavior of the nickel-based cast superalloy K423A in NaNO3 solution, Electrochim. Acta, 253(2017), p. 379.

    Article  CAS  Google Scholar 

  30. C. Xu, L.Y. Chen, C.B. Zheng, et al., Improved wear and corrosion resistance of microarc oxidation coatings on Ti-6Al-4V alloy with ultrasonic assistance for potential biomedical applications, Adv. Eng. Mater., 23(2021), No. 4, art. No. 2001433.

  31. J.W. Lu, P. Ge, Q. Li, et al., Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy, J. Alloys Compd., 727(2017), p. 1126.

    Article  CAS  Google Scholar 

  32. D.P. Wang, G. Chen, A.D. Wang, et al., Corrosion behavior of single- and poly-crystalline dual-phase TiAl-Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 689.

    Article  CAS  Google Scholar 

  33. L.Y. Chen, H.Y. Zhang, C.B. Zheng, et al., Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti-6Al-4V in dynamic Hank’s solution, Mater. Des., 208(2021), art. No. 109907.

  34. C.H. Hsu and F. Mansfeld, Technical note: Concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corrosion, 57(2001), No. 9, p. 747.

    Article  CAS  Google Scholar 

  35. J.R. Chen and W.T. Tsai, In situ corrosion monitoring of Ti-6Al-4V alloy in H2SO4/HCl mixed solution using electrochemical AFM, Electrochim. Acta, 56(2011), No. 4, p. 1746.

    Article  CAS  Google Scholar 

  36. Y. Li, T. Zhou, P. Luo, and S.G. Xu, Surface modification of Ti-49.8at%Ni alloy by Ti ion implantation: Phase transformation, corrosion, and cell behavior, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 868.

    Article  CAS  Google Scholar 

  37. Q.Z. Wang, F. Zhou, Z.F. Zhou, et al., Effect of titanium or chromium content on the electrochemical properties of amorphous carbon coatings in simulated body fluid, Electrochim. Acta, 112(2013), p. 603.

    Article  CAS  Google Scholar 

  38. D. Mahadule, R.K. Khatirkar, S.K. Gupta, A. Gupta, and T.R. Dandekar, Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications, J. Alloys Compd., 912(2022), art. No. 165240.

  39. M. Atapour, A.L. Pilchak, G.S. Frankel, and J.C. Williams, Corrosion behavior of β titanium alloys for biomedical applications, Mater. Sci. Eng. C, 31(2011), No. 5, p. 885.

    Article  CAS  Google Scholar 

  40. J.Q. Li, Y.B. Zou, Y. Yang, Q. Wang, and S.H. Shi, Electrochemical properties and dissolved behavior of laser solid formed Ti6Al4V alloy in NaCl solution with different current densities, Mater. Today Commun., 33(2022), art. No. 104746.

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 92160301) and the Industrial Technology Development Program, China (No. JCKY2021605B026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Duan, S., Yue, X. et al. Comparison of electrochemical behaviors of Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe and Ti-6Al-4V titanium alloys in NaNO3 solution. Int J Miner Metall Mater 31, 750–763 (2024). https://doi.org/10.1007/s12613-023-2762-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2762-y

Keywords

Navigation