Skip to main content
Log in

Extraction and recycling technologies of cobalt from primary and secondary resources: A comprehensive review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Cobalt has excellent electrochemical, magnetic, and heat properties. As a strategic resource, it has been applied in many high-tech products. However, the recent rapid growth of the battery industry has substantially depleted cobalt resources, leading to a crisis of cobalt resource supply. The paper examines cobalt ore reserves and distribution, and the recent development and consumption of cobalt resources are summarized as well. In addition, the principles, advantages and disadvantages, and research status of various methods are discussed comprehensively. It can be concluded that the use of diverse sources (Cu-Co ores, Ni-Co ores, zinc plant residues, and waste cobalt products) for cobalt production should be enhanced to meet developmental requirements. Furthermore, in recovery technology, the pyro-hydrometallurgical process employs pyrometallurgy as the pretreatment to modify the phase structure of cobalt minerals, enhancing its recovery in the hydrometallurgical stage and facilitating high-purity cobalt production. Consequently, it represents a promising technology for future cobalt recovery. Lastly, based on the above conclusions, the prospects for cobalt are assessed regarding cobalt ore processing and sustainable cobalt recycling, for which further study should be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. Joo, D.J. Shin, C. Oh, J.P. Wang, G. Senanayake, and S.M. Shin, Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I, Hydrometallurgy, 159(2016), p. 65.

    Article  CAS  Google Scholar 

  2. O. Dolotko, I.Z. Hlova, Y. Mudryk, S. Gupta, and V.P. Balema, Mechanochemical recovery of Co and Li from LCO cathode of lithium-ion battery, J. Alloys Compd., 824(2020), art. No. 153876.

  3. M.S. Safarzadeh, N. Dhawan, M. Birinci, and D. Moradkhani, Reductive leaching of cobalt from zinc plant purification residues, Hydrometallurgy, 106(2011), No. 1–2, p. 51.

    Article  CAS  Google Scholar 

  4. T. Schmidt, M. Buchert, and L. Schebek, Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries, Resour. Conserv. Recycl., 112(2016), p. 107.

    Article  Google Scholar 

  5. G.A. Campbell, The cobalt market revisited, Miner. Econ., 33(2020), No. 1–2, p. 21.

    Article  Google Scholar 

  6. H.Y. Wang, Z.F. Li, Q. Meng, et al., Ammonia leaching of valuable metals from spent lithium ion batteries in NH3–(NH4)2SO4–Na2SO3 system, Hyoromatullurgy, 208 (2022), art. No. 105809.

  7. J.W. Li, Z. Ma and P.Y. Li, Analysis of critical mineral strategies of US and EU and their enlightenment to China, Bull. Chin. Academy Sci., 37(2022), No. 11, p. 1560.

    Google Scholar 

  8. Q.S. Wu and S.J. Xue, Supply security analysis of China’s critical minerals under the Sino-US trade change, J. China Univ. Geosci. Social Sci. Ed., 19(2019), No. 5, p. 69.

    Google Scholar 

  9. B. Lafuente, R.T. Downs, H. Yang, and N. Stone, 1. The power of databases: The RRUFF project, [in] T. Armbruster and R.M. Danisi, eds., Highlights Mineralogical Crystallography, De Gruyter, Berlin, 2015, p. 1.

    Google Scholar 

  10. K.J. Schulz, J.H. DeYoung, Jr., R. Seal II, and D.C. Bradley, Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply, US Geological Survey, Reston, 2017.

    Book  Google Scholar 

  11. V.I. Berger, D.A. Singer, J.D. Bliss, and B.C. Moring, Ni–Co Laterite Deposits of the World: Database and Grade and Tonnage Models, US Geological Survey, Reston, 2011.

    Google Scholar 

  12. N.J.W. Croxford, Cobalt mineralization at Mount Isa, Queensland, Australia, with references to Mount Cobalt, Miner. Deposita, 9(1974), No. 2, p. 105.

    Article  CAS  Google Scholar 

  13. D.J. Fu, Geological features and genesis of the cobalt deposit of Wubaoshan in western Jiangxi, Miner. Resour. Geol., 12(1998), No. 2, p. 106.

    Google Scholar 

  14. M. Nagashima, M. Akasaka, and Y. Morifuku, Ore and skarn mineralogy of the yamato mine, yamaguchi prefecture, Japan, with emphasis on silver-, bismuth-, cobalt-, and tin-bearing sulfides, Resour. Geol., 66(2016), No. 1, p. 37.

    Article  CAS  Google Scholar 

  15. J.T. Nash and G.A. Hahn, Stratabound Co–Cu Deposits and Mafic Volcaniclastic Rocks in the Blackbird Mining District, Geological Association of Canada, Lemhi, 1989, p. 339.

    Google Scholar 

  16. P.J. Williams, An introduction to the metallogeny of the McArthur River-Mount Isa-Cloncurry minerals province, Econ. Geol., 93(1998), No. 8, p. 1120.

    Article  CAS  Google Scholar 

  17. W.Y. Xu, Geochemical characteristics of cobalt associated with skarite iron (copper) deposits in China, Geol. Explor., (1979), No. 3, p.24.

  18. Q. Dehaine, L.T. Tijsseling, H.J. Glass, T. Törmänen, and A.R. Butcher, Geometallurgy of cobalt ores: A review, Miner. Eng., 160(2021), art. No. 106656.

  19. H. Wang, C.Y. Feng, and M.Y. Zhang, Characteristics and exploration and research progress of global cobalt deposits, Miner. Depos., 38(2019), No. 4, p. 739.

    Google Scholar 

  20. T. Pan, Cobalt resources and its mineralization in China, Miner. Resour. Geol., 17(2003), No. 4, art. No. 516J518.

  21. Z.W. Zhang, W.Y. Li, C.Y. Feng, et al., Study on metallogenic regularity of Co Ni deposits in China and its efficient exploration techniques, Northwestern Geol., 55(2022), No. 2, p. 14.

    CAS  Google Scholar 

  22. C.Y. Feng, D.Q. Zhang, and X.Y. Dang, Cobalt resources of China and their exploitation and utilization, Miner. Deposits, 23(2004), No. 1, p. 93.

    CAS  Google Scholar 

  23. K.B. Shedd, Mineral Commodity Summaries, U.S. Geological Survey, Reston, 2017–2022.

    Google Scholar 

  24. Z.Y. Chen, L.G. Zhang, and Z.M. Xu, Analysis of cobalt flows in mainland China: Exploring the potential opportunities for improving resource efficiency and supply security, J. Clean. Prod., 275(2020), art. No. 122841.

  25. B. Liu, Y.H. Wang, C. Wang, J.P. Wang, F.F. Zhang, and Z.N. Zhao, Situation and suggestions of China’s cobalt resources industry, Resour. Ind., 16(2014), No. 3, p.113.

    Google Scholar 

  26. Y.C. Liu, B. S. Zhang, G.Q. Liu, et al., Market analysis of cobalt in 2020, China Resour. Compr. Util., 38(2022), No. 11, p. 110.

    CAS  Google Scholar 

  27. Z.K. Zhao, H.L. Xie, Z.Y. Wen, et al., Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488.

    Article  CAS  Google Scholar 

  28. K. Sit, P.K.C. Li, C.W. Ip, et al, Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells, J. Power Sources, 125(2004), No. 1, p. 124.

    Article  CAS  Google Scholar 

  29. X.L. Zeng, J.H. Li, and N. Singh, Recycling of spent lithiumion battery: A critical review, Crit. Rev. Env. Sci. Technol., 44(2014), No. 10, p. 1129.

    Article  CAS  Google Scholar 

  30. W.Q. Wang, H.H. Chen, X.Y. Fu, J.Z. Jiang, X.M. Pan, and Z.Q. Zhang, The toxic effect of heavy metals from soil contaminated by waste batteries on mice, J. Jinhua Polytechnic, 20(2020), No. 3, p.83.

    Google Scholar 

  31. Y.J. Zhou and Y. Li, Analysis of cobalt supply in China from the perspective of security, Miner. Deposits, 33(2014), No. s1, p. 883.

    Google Scholar 

  32. Y. Jiang, Transformation of melting electric furnace for copper-cobalt ore reduction, Nonferrous Met., (2013), No. 1, p. 14.

  33. Y.Z. Xu, Study on process of preparing cobalt oxide by using low-grade copper-cobalt ore, Yunnan Metall., 39(2010), No. 5, p. 35.

    Google Scholar 

  34. C.B. Tang, Y. Li, S.H. Yang, Y.M. Chen, L.G. Ye, and W.H. Zhang, Recovery of copper and cobalt from cobalt-bearing copper sulphide ore smelting slag by reduction matte smelting, Nonferrous Met., (2015), No. 1, p. 1.

  35. N.L. Cui, Design of separation and purification section of Jinchuan No. 2 cobalt workshop, Non-ferrous Smelting, (1981), No. 1, p. 1.

  36. X.X. Meng, Development of cobalt smelting technology in Jinchuan Company, Nonferrous Metall., (1997), No. 4, p. 1.

  37. D. Wang, Jinchuan nonferrous metal company smelter, Non-ferrous Smelting, (1981), No. 12, p. 5.

  38. M.P. Sudbury, Nickel and cobalt smelters handle secondary materials, Non-ferrous Smelting, (1988), No. 5, p. 33.

  39. N.J. Kang, Progress of hot compression leaching technology for nickel and cobalt smelting in China, Non-ferrous Smelting, (1995), No. 2, p. 1.

  40. J.S. Huang and Q.X. Huang, Technical exchange and investigation report on nickel and cobalt smelting in Otokunpu, Finland, Heavy Non-ferrous Smelting, (1980), No.10, p. 46.

  41. L.Y. Lu, Progress of nickel smelting technology in China, Non-ferrous Smelting, (1996), No. s1, p.12.

  42. P.Y. Liao, New technology practice of cobalt smelting, Non-ferrous Met., (1981), No. 6, p. 1.

  43. H. Li, L.L. Chen, H.B. Wang, B.S. Zhang, and Y.P. Jiang, Study on comprehensive recovery process for purification cobalt residue from zinc hydrometallurgy, Nonferrous Met. Extr. Metall., (2019), No. 9, p. 67.

  44. J.J. Wang, Y. Ma, T. Xu, G. Zhang, D.J. Wang, and B.Y. Lu, Research on the comprehensive utilization processes of waste samarium-cobalt magnet, Chin. Rare Earths, 36(2015), No. 5, p. 66.

    Google Scholar 

  45. Q.H. He, W.Q. Liu, C. Zou, et al., Study on separation of cobalt and manganese from waste residue of PTA by ammonia-carbonate leaching, Chem. Ind. Eng. Prog., 35(2016), No. 8, p.2580.

    Google Scholar 

  46. M.D. Jiang, J.Y. Zhang, H.Z. Xie, et al., Research progress on recovery of valuable metal cobalt from waste lithium batteries by acid leaching, Technol. Dev. Chem. Ind., 50(2021), No. 3, p. 60.

    Google Scholar 

  47. F.B. Xie, Review on recovery technology of cobalttiferous waste materials, Min. Metall., 12(2003), No. 1, p. 63.

    CAS  Google Scholar 

  48. T. Xie, J.Y. Xu, G. Yao, et al., Review of development status of copper-cobalt mining in Congo (DRC), Chin. J. Nonferrous Met., 31(2021), No. 11, p. 3422.

    Google Scholar 

  49. G.Q. Shuai and G.H. Wang, Ignition recovery of cobalt in Jinchuan Company, Nonferrous Metall., (1995), No. 3, p. 15.

  50. Y.C. Sun, Current status and development direction of copper and cobalt smelting process in Katanga Province, DRC, Non-ferrous Met. Abstract, 30(2015), No. 4, p. 94.

    Google Scholar 

  51. Y.Y. Liu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and F.X. Xiao, Process mineralogy characteristics of the complex oxidized copper-cobalt ore of Zambia, Non-ferrous Energy Sav. Metall., 32(2016), No. 3, p. 13.

    CAS  Google Scholar 

  52. X.X. Liang, L. Hu, and Q.S. Ouyang, The research status and development trends of Cu-Co ore, Hunan Nonferrous Met., 30 (2014), No. 3, p. 42.

    CAS  Google Scholar 

  53. F. Zhang, Design and research on mineral processing process flow for a certain copper-cobalt mine in Congo(DRC), Nonferrous Met. Eng. Res., 38(2017), No. 5, p. 8.

    CAS  Google Scholar 

  54. W.S. Yu, Direct reduction leaching of copper and cobalt in oxide ore from Congo(Kinshasa), Hydrometallurgy China, 38(2019), No. 2, p.88.

    Google Scholar 

  55. S.R. Ding, Y.D. Lu, W.R. Chi, and M.Z. Zheng, High-efficiency new cobalt recovery process for treating DRC Cu-Co oxide ore, Nonferrous Equip., 35(2021), No. 5, p. 21.

    Google Scholar 

  56. L. Li, J. Lu, Y. Ren, et al., Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries, J. Power Sources, 218(2012), p. 21.

    Article  CAS  Google Scholar 

  57. H.Z. Xie, Study on recovering cobalt from the Congo cobalt-containing copper oxide ore by reduction leaching-impurities removal-cobalt precipitation with active magnesium oxide, Conserv. Util. Miner. Resour., 41(2021), No. 5, p. 50.

    Google Scholar 

  58. L.M. Ou, B.F. Hu, and J.W. Duan, Study on separating technology of a Congo(Kinshasa) refractory copper-cobalt oxide ore, Met. Mine, (2011), No. 9, p. 76.

  59. J. Liu, L.Y. Li, S.M. Xu, and R.A. Chi, Recovery of copper and cobalt from low-grade heterogenite with reductive acid leaching method, Chin. J. Nonferrous Met., 22(2012), No. 1, p. 304.

    CAS  Google Scholar 

  60. Y.Y. Liu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and F.X. Xiao, Bioleaching of refractory low grade copper-cobalt ore, J. Mater. Metall., 15(2016), No. 2, p. 92.

    CAS  Google Scholar 

  61. Q.B. Yu, Q.J. Wei, and C.H. Guo, Study on the roasting process of Cu-Co concentrate of Afirca, China Resour. Compr. Util., 35(2017), No. 1, p. 19.

    Google Scholar 

  62. L. Sun and K.Q. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage., 32(2012), No. 8, p. 1575.

    Article  CAS  Google Scholar 

  63. D.F. Qiu, Pressure hydrometallurgical process chemistry and industrial practice, Min. Metall., 3(1994), No. 4, p. 55.

    CAS  Google Scholar 

  64. W.F. Lan, Oxygen pressure leaching of Cu–Co sulfide concentrate, Min. Metall. Eng., 38(2018), No. 4, p. 115.

    Google Scholar 

  65. H. Li, S.P. Liu, H.B. Wang, Y.F. Wang, L.L. Chen, and W. Gao, Study on pressure leaching of Cu-Co sulfide concentrate from Congo(Kinshasa), Nonferrous Met., (2019), No. 5, p. 17.

  66. S. Huang, L. Zhang, H.B. Wang, and Y.P. Feng, Research on the pressure leaching of complex cobalt sulphide ore, Nonferrous Met., (2010), No. 1, p. 2.

  67. X.L. Li, S.C. Qin, H. Li, Y.P. Feng, and S.P. Liu, Study on behavior of Fe and Mn in process of pressure leaching of copper-cobalt sulfide, Nonferrous Met., (2020), No. 12, p. 1.

  68. C.Z. Wang, Technical research about the fire-refining of blister copper, Nonferrous Min. Metall., (2005), No. 1, p. 27.

  69. S. Hong, W. Liu, and F.Q. Liu, Preliminary study on reduction and extraction of copper and cobalt from copper converter slag by using waste cathode carbon block, Light Met., (2019), No. 8, p. 41.

  70. L.G. Ye, Y. Li, C.B. Tang, M.T. Tang, and W.H. Zhang, Distribution calculation of cobalt in pyrometallurgy process of copper and cobalt associated sulphide ore, Nonferrous Met., (2014), No. 2, p. 5.

  71. F.M. Fu, Q.Y. Hu, J.H. Li, and L.J. Li, Study about hydrochloric acid leaching of nickel laterites, Hunan Nonferrous Met., 24(2008), No. 6, p. 9.

    CAS  Google Scholar 

  72. W.J. Yang, B.Z. Ma, X.M. Jiang, and H. Wang, Selective leaching of nickel and cobalt from limonitic laterite after activation pretreatment, Nonferrous Met., (2018), No. 1, p. 16.

  73. H. Guo, H.K. Fu, Q.X. Jing, L.J. Wu, and W.C. Liang, Atmospheric leaching of Ni, Co and Fe in laterite nickel ore using sulfide acid, Hydrometallurgy China, 39(2020), No. 3, p. 190.

    Google Scholar 

  74. Y.F. Li and B. Chen, The current status of laterite nickel ore resources and advance in its processing technology, Min. Metall., 23(2014), No. 4, p. 70.

    Google Scholar 

  75. W.Y. Ma and X.Q. Hou, Study on the production process of cobalt oxide from Jinchuan cobalt slag, Nonferrous Smelting, (1981), No. 3, p. 1.

  76. H.F. Hou, Extraction of cobalt by electrolysis from various kinds of cobalt-containing raw materials, Shanghai Nonferrous Met., 22(2001), No. 3, p. 132.

    CAS  Google Scholar 

  77. C.W. Li, W.S. Chai, and B.S. Zhang, Brief analysis of global nickel resource supply status, China Resour. Compr. Util., 38(2020), No. 7, p. 99.

    Google Scholar 

  78. J.H. Li, Z.F. Xu, Y. Gao, D.S. Li, Y. Liu and C.D. Zhao, Selectively leaching valuable metals from laterite nickel ore by ammonium chloride, Chin. J. Nonferrous Met., 29(2019), No. 5, p. 1049.

    Google Scholar 

  79. S. Stanković, S. Stopić, M. Sokić, B. Marković, and B. Friedrich, Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores, Metall. Mater. Eng., 26(2020), No. 2, p. 199.

    Article  Google Scholar 

  80. A. Ucyildiz and I. Girgin, High pressure sulphuric acid leaching of lateritic nickel ore, Physicochem. Probl. Miner. Process., 53(2017), No. 1, p. 475.

    CAS  Google Scholar 

  81. D. Georgiou and V.G. Papangelakis, Sulphuric acid pressure leaching of a limonitic laterite: Chemistry and kinetics, Hydrometallurgy, 49(1998), No. 1–2, p. 23.

    Article  CAS  Google Scholar 

  82. X.Y. Guo, W.T. Shi, D. Li, and Q.H. Tian, Leaching behavior of metals from limonitic laterite ore by high pressure acid leaching, Trans. Nonferrous Met. Soc. China, 21(2011), No. 1, p. 191.

    Article  CAS  Google Scholar 

  83. N. Pandey, S.K. Tripathy, S.K. Patra, and G. Jha, Recent progress in hydrometallurgical processing of nickel lateritic ore, Trans. Indian Inst. Met., 76(2023), No. 1, p. 11.

    Article  CAS  Google Scholar 

  84. R.G. McDonald and B.I. Whittington, Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies, Hydrometallurgy, 91(2008), No. 1–4, p. 56.

    Article  CAS  Google Scholar 

  85. E. Büyükakinci and Y.A. Topkaya, Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching, Hydrometallurgy, 97(2009), No. 1–2, p. 33.

    Article  Google Scholar 

  86. M. Hosseini Nasab, M. Noaparast, and H. Abdollahi, Dissolution optimization and kinetics of nickel and cobalt from iron-rich laterite ore, using sulfuric acid at atmospheric pressure, Int. J. Chem. Kinet., 52(2020), No. 4, p. 283.

    Article  CAS  Google Scholar 

  87. G.H. Li, Q. Zhou, Z.P. Zhu, et al., Selective leaching of nickel and cobalt from limonitic laterite using phosphoric acid: An alternative for value-added processing of laterite, J. Clean. Prod., 189(2018), p. 620.

    Article  CAS  Google Scholar 

  88. N.J. Sun, Z. Wang, Z.C. Guo, G.Q. Zhang, and T. Qi, Effects of temperature, CO content, and reduction time on the selective reduction of a limonitic laterite ore, Miner. Eng., 174(2021), art. No. 107277.

  89. B.Z. Ma, C.Y. Wang, W.J. Yang, F. Yin, and Y.Q. Chen, Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel-cobalt to produce a high-grade iron concentrate, Miner. Eng., 50–51(2013), p. 106.

    Article  Google Scholar 

  90. F. He, B.Z. Ma, C.Y. Wang, Y.A. Zuo, and Y.Q. Chen, Dissolution behavior and porous kinetics of limonitic laterite during nitric acid atmospheric leaching, Miner. Eng., 185(2022), art. No. 107671.

  91. F. He, B.Z. Ma, C.Y. Wang, et al., Microwave pretreatment for enhanced selective nitric acid pressure leaching of limonitic laterite, J. Cent. South Univ., 28(2021), No. 10, p. 3050.

    Article  CAS  Google Scholar 

  92. J. Marrero, O. Coto, S. Goldmann, T. Graupner, and A. Schippers, Recovery of nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions using acidithiobacillus species, Environ. Sci. Technol., 49(2015), No. 11, p. 6674.

    Article  CAS  PubMed  Google Scholar 

  93. S.P. Liu, H.B. Wang, L. Zhang, and X.P. Zou, Pilot study on a combined process of heap leaching and atmospheric tank leaching for nickel laterites, Min. Metall. Eng., 34(2014), No. 5, p, 97.

    Google Scholar 

  94. P.Y. Zhang, Q. Guo, G.Y. Wei, et al., Extraction of metals from saprolitic laterite ore through pressure hydrochloric-acid selective leaching, Hydrometallurgy, 157(2015), p. 149.

    Article  CAS  Google Scholar 

  95. M. Hutton-Ashkenny, D. Ibana, and K.R. Barnard, Reagent selection for recovery of nickel and cobalt from nitric acid nickel laterite leach solutions by solvent extraction, Miner. Eng., 77(2015), p. 42.

    Article  CAS  Google Scholar 

  96. C. Williams, W. Hawker, and J.W. Vaughan, Selective leaching of nickel from mixed nickel cobalt hydroxide precipitate, Hydrometallurgy, 138(2013), p. 84.

    Article  CAS  Google Scholar 

  97. W. Astuti, F. Nurjaman, F. Rofiek Mufakhir, et al., A novel method: Nickel and cobalt extraction from citric acid leaching solution of nickel laterite ores using oxalate precipitation, Miner. Eng., 191(2023), art. No. 107982.

  98. A.B. Botelho Jr, A. de Albuquerque Vicente, D.C.R. Espinosa, and J.A.S. Tenório, Recovery of metals by ion exchange process using chelating resin and sodium dithionite, J. Mater. Res. Technol., 8(2019), No. 5, p. 4464.

    Article  CAS  Google Scholar 

  99. P. Littlejohn and J. Vaughan, Recovery of nickel and cobalt from laterite leach tailings through resin-in-pulp scavenging and selective ammoniacal elution, Miner. Eng., 54(2013), p. 14.

    Article  CAS  Google Scholar 

  100. M.M. Khosravirad, F. Bakhtiari, S. Ghader, and E. Abkhoshk, An improved process methodology for extracting cobalt from zinc plant residues, Hydrometallurgy, 19((2220), art. No. 105163.

  101. L. Boisvert, K. Turgeon, J.F. Boulanger, C. Bazin, and G. Houlachi, Recovery of cobalt from the residues of an industrial zinc refinery, Metals, 10(2020), No. 11, art. No. 1553.

  102. P. Xing, B.Z. Ma, P. Zeng, et al., Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1217.

    Article  CAS  Google Scholar 

  103. J.J. Wang, D.S. Tan, J.J. Ding, et al., Experimental study on leaching of valuable metals from purification residue of zinc hydrometallurgy, Conserv. Util. Miner. Resour., 41(2021), No. 2, p. 137.

    CAS  Google Scholar 

  104. Y.K. Huang, H.J. Guo, C. Zhang, et al., A novel method for the separation of zinc and cobalt from hazardous zinc-cobalt slag via an alkaline glycine solution, Sep. Purif. Technol., 273(2021), art. No. 119009.

  105. Y.B. Geng, G.H. Han, Y.K. Huang, Z.Q. Ma, Y.F. Huang, and W.J. Peng, Separation and recovery of zinc and cobalt from zinc plant residue by alkali leaching, [in] Symposium on Recycling of Secondary, Byproduct Materials and Energy held at TMS 149th Annual Meeting and Exhibition, San Diego, 2020, p. 397.

  106. M.D. Turan, S. Assemi, R.K. Nadirov, G.A. Karamyrzayev, O. Baigenzhenov, and N. Toro, Selective hydrochloric acid leaching of zinc, lead and silver from mechanically activated zinc plant residue, Russ. J. Non-Ferrous Met., 63(2022), No. 5, p. 490.

    Article  Google Scholar 

  107. J.C. Yu, B.Z. Ma, C.Y. Wang, and Y.Q. Chen, One-step recovery of cobalt from ammonia-ammonium carbonate system via pressurized ammonia distillation, Waste Manage., 162(2023), p. 92.

    Article  CAS  Google Scholar 

  108. Q.H. Tian, Y.T. Xin, B. Yao, and X.Y. Guo, Efficient purification of trace cobalt in zinc hydrometallurgical process by ozone oxidation, Chin. J. Nonferrous Met., 23(2013), No. 4, p. 1140.

    CAS  Google Scholar 

  109. P. Ashtari and P. Pourghahramani, Hydrometallurgical recycling of cobalt from zinc plants residue, J. Mater. Cycles Waste Manage., 20(2018), No. 1, p. 155.

    Article  CAS  Google Scholar 

  110. Y.K. Huang, Z.F. Zhang, Y.J. Cao, et al., Overview of cobalt resources and comprehensive analysis of cobalt recovery from zinc plant purification residue-A review, Hydrometallurgy, 193(2020), art. No. 105327.

  111. J.Y. Chen, Handbook of Hydrometallurgy, Metallurgical Industry Press, Beijing, 2005.

    Google Scholar 

  112. Y. Li, J.G. Hu, M.B. Fu, J. Tang, L.L. Dong, and S.J. Liu, Investigation of intermolecular interactions of mixed extractants of quaternary phosphonium or ammonium chlorides and bis(2,4,4-ethylhexyl)phosphoric acid for metal separation, RSC Adv., 6(2016), No. 62, p. 56772.

    Article  CAS  Google Scholar 

  113. K. Kongolo, M.D. Mwema, A.N. Banza, and E. Gock, Cobalt and zinc recovery from copper sulphate solution by solvent extraction, Miner. Eng., 16(2003), No. 12, p. 1371.

    Article  CAS  Google Scholar 

  114. F. Jiao, K. Shi, W.Q. Qin, J.W. Han, H.L. Zhu, and C.R. Yang, A review on recycling of spent NCM batteries and pollution control, Min. Metall. Eng., 41(2021), No. 5, p. 153.

    Google Scholar 

  115. B.J. Wen and Z.K. Han, Substance flow analysis of cobalt in China in 2015, China Min. Mag., 27(2018), No. 1, p. 73.

    Google Scholar 

  116. K. Yan, X. Guo, Q. Tian, and D. Li, Cobalt flow analysis of lithium-ion battery system in China, J. Cent. South Univ. Sci. Technol., 48(2017), No. 1, p. 25.

    Google Scholar 

  117. W.G. Zhang, Y.Q. He, T. Zhang, G.W. Zhang, and J. Wang, Floatability improvement of Co-enriched powders recovered from spent lithium-ion battery, China Powder Sci. Technol., 22(2016), No. 1, p. 23.

    Article  CAS  Google Scholar 

  118. H.J. Huang and Q.S. Huang, Mechanism of recycling electrode materials spent lithium batteries by ball milling-low temperature heat treatment-flotation, Chin. J. Nonferrous Met., 29(2019), No. 4, p. 878.

    Google Scholar 

  119. L.P. He, S.Y. Sun, X.F. Song, and J.G. Yu, Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Manage., 46(2015), p. 523.

    Article  CAS  Google Scholar 

  120. J.G. Kang, J. Sohn, H. Chang, G. Senanayake, and S.M. Shin, Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method, Adv. Powder Technol., 21(2010), No. 2, p. 175.

    Article  CAS  Google Scholar 

  121. J.J. Woo, V.A. Maroni, G. Liu, et al., Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion, J. Electrochem. Soc., 161(2014), No. 5, p. A827.

    Article  CAS  Google Scholar 

  122. J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithiumion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942.

    Article  CAS  Google Scholar 

  123. X.H. Zhang, Y.B. Xie, H.B. Cao, F. Nawaz, and Y. Zhang, A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries, Waste Manage., 34(2014), No. 9, p. 1715.

    Article  Google Scholar 

  124. D.Y. Mu, Z. Liu, S. Jin, Y.L. Liu, S. Tian, and C.S. Dai, The recovery and recycling of cathode materials and electrolyte from spent lithium ion batteries in full process, Prog. Chem., 32(2020), art. No. 950.

  125. R. Sattar, S. Ilyas, H.N. Bhatti, and A. Ghaffar, Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries, Sep. Purif. Technol., 209(2019), p. 725.

    Article  CAS  Google Scholar 

  126. P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J., 281(2015), p. 418.

    Article  CAS  Google Scholar 

  127. X.R. Deng and G.S. Zeng, Hydrometallurgical process for metals recovery and synthesis of LiCoO2 from spent lithium-ion batteries, Chin. J. Environ. Eng., 5(2011), No. 12, p. 2869.

    CAS  Google Scholar 

  128. F. Jiang, Y.Q. Chen, S.H. Ju, et al., Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries, Ultrason. Sonochem., 48(2018), p. 88.

    Article  CAS  PubMed  Google Scholar 

  129. N. Vieceli, C.A. Nogueira, C. Guimaräes, M.F.C. Pereira, F.O. Duräo, and F. Margarido, Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite, Waste Manage., 71(2018), p. 350.

    Article  CAS  Google Scholar 

  130. Y.Q. Lai, J. Yang, G. Zhang, et al., Optimization and kinetics of leaching valuable metals from cathode materials of spent ternary lithium ion batteries with starch as reducing agent, Chin. J. Nonferrous Met., 29(2019), No. 1, p. 153.

    Google Scholar 

  131. S.P. Barik, G. Prabaharan, and L. Kumar, Leaching and separation of Co and Mn from electrode materials of spent lithiumion batteries using hydrochloric acid: Laboratory and pilot scale study, J. Clean. Prod., 147(2017), p. 37.

    Article  CAS  Google Scholar 

  132. Y. Guo, F. Li, H.C. Zhu, G.M. Li, J.W. Huang, and W.Z. He, Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl), Waste Manage., 51(2016), p. 227.

    Article  CAS  Google Scholar 

  133. C.K. Lee and K.I. Rhee, Reductive leaching of cathodic active materials from lithium ion battery wastes, Hydrometallurgy, 68(2003), No. 1–3, p. 5.

    Article  CAS  Google Scholar 

  134. Yuliusman, R. Fajaryanto, A. Nurqomariah, and Silvia, Acid leaching and kinetics study of cobalt recovery from spent lithium-ion batteries with nitric acid, [in] 3rd International Tropical Renewable Energy Conference Sustainable Development of Tropical Renewable Energy, Kuta, 2008, art. No. 03025.

  135. E.G. Pinna, M.C. Ruiz, M.W. Ojeda, and M.H. Rodriguez, Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors, Hydrometallurgy, 167(2017), p. 66.

    Article  CAS  Google Scholar 

  136. L. Li, J.B. Dunn, X.X. Zhang, et al., Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment, J. Power Sources, 233(2013), p. 180.

    Article  CAS  Google Scholar 

  137. E.S. Fan, J.B. Yang, Y.X. Huang, et al., Leaching mechanisms of recycling valuable metals from spent lithium-ion batteries by a malonic acid-based leaching system, ACS Appl. Energy Mater., 3(2020), No. 9, p. 8532.

    Article  CAS  Google Scholar 

  138. Y. Zheng, H.L. Long, L. Zhou, Z.S. Wu, and J.W. Liu, Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant, Int. J. Environ. Res., 10(2016), No. 1, p. 159.

    CAS  Google Scholar 

  139. X.P. Chen and T. Zhou, Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media, Waste Manage. Res., 32(2014), No. 11, p. 1083.

    Article  Google Scholar 

  140. X.L. Zeng, J.H. Li, and B.Y. Shen, Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, J. Hazard. Mater., 295(2015), p. 112.

    Article  CAS  PubMed  Google Scholar 

  141. R. Gao and J.F. Wang, Recovery of cobalt from the LiNi1/3Co1/3Mn1/3O2 cathode of waste lithium-ion batteries, Chin. J. Environ. Eng., 14(2020), No. 2, p. 506.

    Google Scholar 

  142. W.F. Gao, J.L. Song, H.B. Cao, et al., Selective recovery of valuable metals from spent lithium-ion batteries-Process development and kinetics evaluation, J. Clean. Prod., 178(2018), p. 833.

    Article  CAS  Google Scholar 

  143. H. Setiawan, H.T.B.M. Petrus, and I. Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 98.

    Article  CAS  Google Scholar 

  144. L. Li, W.J. Qu, X.X. Zhang, et al., Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries, J. Power Sources, 282(2015), p. 544.

    Article  CAS  Google Scholar 

  145. L.P. He, S.Y. Sun, Y.Y. Mu, X.F. Song, and J.G. Yu, Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 714.

    Article  CAS  Google Scholar 

  146. G.P. Nayaka, J. Manjanna, K.V. Pai, R. Vadavi, S.J. Keny, and V.S. Tripathi, Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids, Hydrometallurgy, 151(2015), p. 73.

    Article  CAS  Google Scholar 

  147. L.Q. Zhuang, C.H. Sun, T. Zhou, H. Li, and A.Q. Dai, Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant, Waste Manage., 85(2019), p. 175.

    Article  CAS  Google Scholar 

  148. G.P. Nayaka, K.V. Pai, J. Manjanna, and S.J. Keny, Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries, Waste Manage., 51(2016), p. 234.

    Article  CAS  Google Scholar 

  149. H. Ku, Y. Jung, M. Jo, et al., Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater., 313(2016), p. 138.

    Article  CAS  PubMed  Google Scholar 

  150. L. Li, J. Ge, R.J. Chen, F. Wu, S. Chen, and X.X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Manage., 30(2010), No. 12, p. 2615.

    Article  CAS  Google Scholar 

  151. P. Meshram, Abhilash, B.D. Pandey, T.R. Mankhand, and H. Deveci, Comparision of different reductants in leaching of spent lithium ion batteries, JOM, 68(2016), No. 10, p. 2613.

    Article  CAS  Google Scholar 

  152. G.S. Zeng, X.R. Deng, S.L. Luo, X.B. Luo, and J.P. Zou, A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries, J. Hazard. Mater., 199–200(2012), p. 164.

    Article  PubMed  Google Scholar 

  153. E. Gómez, A. Ballester, M.L. Blázquez, and F. González, Silver-catalysed bioleaching of a chalcopyrite concentrate with mixed cultures of moderately thermophilic microorganisms, Hydrometallurgy, 51(1999), No. 1, p. 37.

    Article  Google Scholar 

  154. S. Chen, W.Q. Qin, and G.Z. Qiu, Effect of Cu2+ ions on bioleaching of marmatite, Trans. Nonferrous Met. Soc. China, 18(2008), No. 6, p. 1518.

    Article  CAS  Google Scholar 

  155. Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897.

    Article  CAS  Google Scholar 

  156. J. Myoung, Y. Jung, J. Lee, and Y. Tak, Cobalt oxide preparation from waste LiCoO2 by electrochemical-hydrothermal method, J. Power Sources, 112(2002), No. 2, p. 639.

    Article  CAS  Google Scholar 

  157. A.A. Nayl, R.A. Elkhashab, S.M. Badawy, and M.A. ElKhateeb, Acid leaching of mixed spent Li-ion batteries, Arab. J. Chem., 10(2017), p. S3632.

    Article  CAS  Google Scholar 

  158. X.P. Chen, H.R. Ma, C.B. Luo, and T. Zhou, Recovery of valuable metals from waste cathode materials of spent lithiumion batteries using mild phosphoric acid, J. Hazard. Mater., 326(2017), p. 77.

    Article  CAS  PubMed  Google Scholar 

  159. R. Torkaman, M. Asadollahzadeh, M. Torab-Mostaedi, and M. Ghanadi Maragheh, Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process, Sep. Purif. Technol., 186(2017), p. 318.

    Article  CAS  Google Scholar 

  160. S.S. Foltova, T.V. Hoogerstraete, D. Banerjee, and K. Binnemans, Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids, Sep. Purif. Technol., 210(2019), p. 209.

    Article  Google Scholar 

  161. X.X. Han and D.W. Armstrong, Ionic liquids in separations, Acc. Chem Res., 40(2007), No. 11, p. 1079.

    Article  CAS  PubMed  Google Scholar 

  162. M.L. Firmansyah, A.T.N. Fajar, R.R. Mukti, T. Ilmi, G.T.M. Kadja, and M. Goto, Recovery of cobalt and manganese from spent lithium-ion batteries using a phosphonium-based ionic liquid, Solvent Extr. Res. Dev., Jpn., 28(2021), No. 1, p. 79.

    Article  CAS  Google Scholar 

  163. K. Larsson and K. Binnemans, Selective extraction of metals using ionic liquids for nickel metal hydride battery recycling, Green Chem, 16(2014), No. 10, p. 4595.

    Article  CAS  Google Scholar 

  164. S. Wellens, B. Thijs, and K. Binnemans, An environmentally friendlier approach to hydrometallurgy: Highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids, Green Chem., 14(2012), No. 6, p. 1657.

    Article  CAS  Google Scholar 

  165. E.A. Othman, A.G.J. van der Ham, H. Miedema, and S.R.A. Kersten, Recovery of metals from spent lithium-ion batteries using ionic liquid [P8888][Oleate], Sep. Purif. Technol., 252(2020), art. No. 117435.

  166. Y.Q. Xie, J. Lin, J. Liang, et al., Hypercrosslinked mesoporous poly(ionic liquid)s with high density of ion pairs: Efficient adsorbents for Cr(VI) removal via ion-exchange, Chem. Eng. J., 378(2019), art. No. 122107.

  167. M. Panigrahi, M. Grabda, D. Kozak, et al., Liquid–liquid extraction of neodymium ions from aqueous solutions of NdCl3 by phosphonium-based ionic liquids, Sep. Purif. Technol., 171(2016), p. 263.

    Article  CAS  Google Scholar 

  168. C.L. Shi, Y. Jing, J. Xiao, X.Q. Wang, Y. Yao, and Y.Z. Jia, Solvent extraction of lithium from aqueous solution using nonfluorinated functionalized ionic liquids as extraction agents, Sep. Purif. Technol., 172(2017), p. 473.

    Article  CAS  Google Scholar 

  169. S. Chun, S.V. Dzyuba, and R.A. Bartsch, Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether, Anal. Chem., 73(2001), No. 15, p. 3737.

    Article  CAS  PubMed  Google Scholar 

  170. V. Eyupoglu, A. Unal, E. Polat, B. Eren, and R. Ali Kumbasar, An efficient cobalt separation using PVDF-co-HFP based ultrafiltration polymer inclusion membrane by room temperature ionic liquids, Sep. Purif. Technol., 303(2022), art. No. 122201.

  171. G. Zante, A. Masmoudi, R. Barillon, D. Trébouet, and M. Boltoeva, Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids, J. Ind. Eng. Chem., 82(2020), p. 269.

    Article  CAS  Google Scholar 

  172. S. Ilyas, R.R. Srivastava, and H. Kim, Selective separation of cobalt versus nickel by split-phosphinate complexation using a phosphonium-based ionic liquid, Environ. Chem. Lett., 21(2023), No. 2, p. 673.

    Article  CAS  Google Scholar 

  173. R. Morina, D. Merli, P. Mustarelli, and C. Ferrara, Lithium and cobalt recovery from lithium-ion battery waste via functional ionic liquid extraction for effective battery recycling, ChemElectroChem, 10(2023), No. 1, art. No. e202201059.

  174. X.H. Jing, Z.N. Wu, D.D. Zhao, S. Li, F.Y. Kong, and Y.J. Chu, Environmentally friendly extraction and recovery of cobalt from simulated solution of spent ternary lithium batteries using the novel ionic liquids of [C8H17NH2][Cyanex 272], ACS Sustainable Chem. Eng., 9(2021), No. 6, p. 2475.

    Article  CAS  Google Scholar 

  175. M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, and P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat. Energy, 4(2019), p. 339.

    Article  CAS  Google Scholar 

  176. X. Chang, M. Fan, C.F. Gu, et al., Selective extraction of transition metals from spent LiNixCoyMn1−xyO2 cathode via regulation of coordination environment, Angew. Chem. Int. Ed., 134(2022), No. 24, art. No. e202202558.

  177. Y. Chen, Y.H. Lu, Z.H. Liu, et al., Efficient dissolution of lithium-ion batteries cathode LiCoO2 by polyethylene glycol-based deep eutectic solvents at mild temperature, ACS Sustainable Chem. Eng., 8(2020), No. 31, p. 11713.

    Article  CAS  Google Scholar 

  178. Y. Chen, Y.L. Wang, Y. Bai, et al., Significant improvement in dissolving lithium-ion battery cathodes using novel deep eutectic solvents at low temperature, ACS Sustainable Chem. Eng., 9(2021), No. 38, p. 12940.

    Article  CAS  Google Scholar 

  179. N. Peeters, K. Binnemans, and S. Riaño, Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents, Green Chem., 22(2020), No. 13, p. 4210.

    Article  CAS  Google Scholar 

  180. P.G. Schiavi, P. Altimari, M. Branchi, et al., Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent, Chem. Eng. J., 417(2021), art. No. 129249.

  181. K. Wang, T.Y. Hu, P.H. Shi, Y.L. Min, J.F. Wu, and Q.J. Xu, Efficient recovery of value metals from spent lithium-ion batteries by combining deep eutectic solvents and coextraction, ACS Sustainable Chem. Eng., 10(2022), No. 3, p. 1149.

    Article  CAS  Google Scholar 

  182. M.M. Wang, Q.Y. Tan, L.L. Liu, and J.H. Li, A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries, J. Hazard Mater., 380(2019), art. No. 120846.

  183. S.B. Wang, Z.T. Zhang, Z.G. Lu, and Z.H. Xu, A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries, Green Chem., 22(2020), No. 14, p. 4473.

    Article  CAS  Google Scholar 

  184. G. Zante, A. Braun, A. Masmoudi, R. Barillon, D. Trébouet, and M. Boltoeva, Solvent extraction fractionation of manganese, cobalt, nickel and lithium using ionic liquids and deep eutectic solvents, Miner. Eng., 156(2020), art. No. 106512.

  185. E.L. Smith, A.P. Abbott, and K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev., 114(2014), No. 21, p. 11060.

    Article  CAS  PubMed  Google Scholar 

  186. Q.H. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, Deep eutectic solvents: Syntheses, properties and applications, Chem. Soc. Rev., 41(2012), No. 21, p. 7108.

    Article  CAS  PubMed  Google Scholar 

  187. C. Liu, S.X. Chen, D. Lü, M.Y. Sun, and X.G. Chen, Discussion on the key technologies for spent power battery recovery, China Nonferrous Metall., 47(2018), No. 2, p. 44.

    Google Scholar 

  188. W.Q. Wang, Y.C. Zhang, X.G. Liu, and S.M. Xu, A simplified process for recovery of Li and co from spent LiCoO2 cathode using Al foil as the in situ reductant, ACS Sustainable Chem. Eng., (2019), art. No. 9b01564.

  189. Z. Huang, J. Zhu, R.J. Qiu, J.J. Ruan, and R.L. Qiu, A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries, J. Clean. Prod., 229(2019), p. 1148.

    Article  CAS  Google Scholar 

  190. G.C. Hu, N.X. Hu, J.J. Wu, and W.H. Ma, Research progress in recovery of valuable metals in cathode materials for lithiumion batteries, Chin. J. Nonferrous Met., 31(2021), No. 11, p. 3320.

    Google Scholar 

  191. Y.P. Fu, Y.Q. He, J.L. Li, et al., Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process, J. Alloys Compd., 847(2020), art. No. 156489.

  192. H.T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultra-low Co content Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1197.

    Article  CAS  Google Scholar 

  193. D.T. Zhang, R.C. Zhu, M. Yue, and W.Q. Liu, Microstructure and magnetic properties of SmCo5 sintered magnets, Rare Met., 39(2020), No. 11, p. 1295.

    Article  CAS  Google Scholar 

  194. T. Xu, X.D. Zhang, Z. Lin, B.Y. Lü, C.M. Ma, and X.L. Gao, Recovery of rare earth and cobalt from Co-based magnetic scraps, J. Rare Earths, 28(2010), p. 485.

    Article  Google Scholar 

  195. K. Murase, K.I. Machida, and G.Y. Adachi, Recovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transport, J. Alloys Compd., 217(1995), No. 2, p. 218.

    Article  CAS  Google Scholar 

  196. K. Sahoo, A.K. Nayak, M.K. Ghosh, and K. Sarangi, Preparation of Sm2O3 and Co3O4 from SmCo magnet swarf by hydrometallurgical processing in chloride media, J. Rare Earths, 36(2018), No. 7, p. 725.

    Article  CAS  Google Scholar 

  197. M.K. Sinha, S. Pramanik, A. Kumari, et al., Recovery of value added products of Sm and Co from waste SmCo magnet by hydrometallurgical route, Sep. Purif. Technol., 179(2017), p. 1.

    Article  CAS  Google Scholar 

  198. C.Y. Cheng, Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime, Hydrometallurgy, 84(2006), No. 1–2, p. 109.

    Article  CAS  Google Scholar 

  199. Z.J. Chen, Z.B. Chen, Y. Sun, et al., Research progress and future development direction of recycling and reuse of superalloy scraps, Mater. Rev., 33(2019), No. 21, p. 3654.

    Google Scholar 

  200. Y.Z. Zhang and C.S. Cai, Recovery of copper and cobalt from alloy scraps under high temperature, Copper Eng., (2000), No. 2, p. 34.

  201. Z. Song, L. Liu, L. Deng, Y. Sun, and Y. Zhou, Electrochemical dissolution behavior of N5 nickel-based single crystal super-alloy in aqua regia electrolyte, J. Chin. Soc. Corros. Prot., 38(2018), No. 4, p. 365.

    Google Scholar 

  202. H.S. Maharana, S.V.S.N. Murty, J. Ramkumar, and K. Mondal, Continuous and ordered surface microtexturing on Cu and Ni-based alloys by novel electrochemical dissolution, J. Alloys Compd, 817(2020), art. No. 153263.

  203. Q.C. Wang, Y. Meng, and J.G. Yuan, A method of recovering valuable metalsfrom cutting waste of Co-Ni, Inorg. Chem. Ind., 38(2006), No. 5, p. 45.

    CAS  Google Scholar 

  204. S.Y. Byun, J.S. Park, J.H. Kang, S. Seo, T. Tran, and M.J. Kim, Recovery of tungsten and cobalt from cemented tungsten carbide wastes using carbonate roasting and water leaching, J. Air Waste Manage. Assoc., 71(2021), No. 6, p. 711.

    Article  CAS  Google Scholar 

  205. J. Lee, M. Kim, S. Kim, Y. Ahn, B. Lee, and D.J. Lee, Facile recycling of cemented tungsten carbide soft scrap via mechanochemical ball milling, Int. J. Refract. Met. Hard Mater., 100(2021), art. No. 105645.

  206. S.C. Lo, T.M. Cheng, C.C. Hu, and C.H. Lai, Separation of tungsten and cobalt from cemented tungsten carbide by rapid breakdown anodization, Sep. Purif. Technol., 310(2023), art. No. 123140.

  207. F.L. Sun, Z.W. Zhao, and X.Y. Chen, Recovery of WC and Co from cemented carbide scraps by remelting and electrodissolution, Int. J. Refract. Met. Hard Mater., 80(2019), p. 23.

    Article  CAS  Google Scholar 

  208. A.L. Zhang, B.Z. Nie, C.X. Xi, and D.L. Ma, Electrochemical separation and extraction of cobalt and tungsten from cemented scrap, Sep. Purif. Technol., 195(2018), p. 244.

    Article  CAS  Google Scholar 

  209. Q.Y. Tang, J.L. Cai, and D.P. Duan, Retrieving metal materials by means of disused hardIron-bounded alloy, Cemented Carbides, 23(2006), No. 3, p. 157.

    Google Scholar 

  210. X.Q. Liu, S.M. Xu, and K.Q. Wang, Recycling of waste WC-Co alloy, Nonferrous Met., 55(2003), No. 3, p. 59.

    CAS  Google Scholar 

  211. B.L. Wan, Study on prepartion of benzaidehyde with toluene by catalyticy oxidation of molybdenum cobalt composite oxides, Mater. Rep., 21(2007), No. 10, p. 138.

    Google Scholar 

  212. M.A. Sabri, G. Bharath, A. Hai, M. Abu Haija, R.P. Nogueira, and F. Banat, Synthesis of molybdenum-cobalt nanoparticles decorated on date seed-derived activated carbon for the simultaneous electrochemical hydrogenation and oxidation of furfural into fuels, Fuel Process. Technol., 238(2022), art. No. 107525.

  213. S.P. Barik, K.H. Park, P.K. Parhi, and J.T. Park, Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid, Hydrometallurgy, 111–112(2012), p. 46.

    Article  Google Scholar 

  214. R. Banda, S.H. Sohn, and M.S. Lee, Process development for the separation and recovery of Mo and Co from chloride leach liquors of petroleum refining catalyst by solvent extraction, J. Hazard. Mater., 213–214(2012), p. 1.

    Article  PubMed  Google Scholar 

  215. A. Ognyanova, F. Ferella, I. De Michelis, G. Taglieri, and F. Veglio, Using of industrial wastes as secondary resources for metal recovery, [in] 9th Interantional Conference on Chemical and Process Engineering, Rome, 2009, p. 1425.

  216. H. Arslanoglu and A. Yaras, Recovery of molybdenum, cobalt and nickel from spent hydrodesulphurization catalyst through oxidizing roast followed by sodium persulfate leaching, Sustainable Mater. Technol., 28(2021), art. No. e00286.

  217. S.H. Joo, Y.U. Kim, J.G. Kang, H.S. Yoon, D.S. Kim, and S.M. Shin, Recovery of molybdenum and rhenium using selective precipitation method from molybdenite roasting dust in alkali leaching solution, Mater. Trans., 53(2012), No. 11, p. 2038.

    Article  CAS  Google Scholar 

  218. L. Zeng, X.L. Liao, Y.H. Sun, and L.S. Xiao, Direct extraction of molybdenum from high acid leach solutions of Ni–Mo ore using an oxime extractant of HBL101, Int. J. Refract. Met. Hard Mater., 51(2015), p. 14.

    Article  CAS  Google Scholar 

  219. S.F. Wang, C. Wei, C.X. Li, Z.G. Deng, M.T. Li, and X.B. Li, Study on oxidation alkaline leaching behavior of molybdenum from Mo-bearing black shale, Min. Metall., 22(2013), No. 1, p. 45.

    Google Scholar 

  220. Y.H. Cao, H.Z. Liu, Z.G. Gao, and S.W. Yang, New process for molybdenum and tungsten extraction from high pressure alkaline leaching solution, Nonferrous Met., (2012), No. 10, p. 27.

  221. Z.Y. Ma, Y. Liu, J.K. Zhou, M.D. Liu, and Z.Z. Liu, Recovery of vanadium and molybdenum from spent petrochemical catalyst by microwave-assisted leaching, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 33.

    Article  CAS  Google Scholar 

  222. S. Huang, J.P. Liu, C.D. Zhang, et al., Extraction of molybdenum from spent HDS catalyst by two-stage roasting followed by water leaching, JOM, 71(2019), No. 12, p. 4681.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Guangxi Science and Technology Major Project (Guike AA22068078), the Natural Science Foundation of Henan Province (No. 222300420548), Henan Province Science and Technology Research and Development plan joint Fund (No. 232301420043), the Key Project of the National Key Research and Development Program of China (No. 2021YFC2902604), and Modern Analysis and Computing Centre in Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Liu or Yijun Cao.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Chen, P., Shu, X. et al. Extraction and recycling technologies of cobalt from primary and secondary resources: A comprehensive review. Int J Miner Metall Mater 31, 628–649 (2024). https://doi.org/10.1007/s12613-023-2734-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2734-2

Keywords

Navigation