Skip to main content
Log in

Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Surface deterioration occurs more easily in nickel-rich cathode materials with the increase of nickel content. To simultaneously prevent deterioration of active cathode materials and improve the electrochemical performance of the nickel-rich cathode material, the surface of nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material is decorated with the stable structure and conductive Li3PO4 by a facile method. The LiNi0.6Co0.2Mn0.2O2-1wt%, 2wt%, 3wt%Li3PO4 samples deliver a high-capacity retention of more than 85% after 100 cycles at 1 C under a high voltage of 4.5 V. The effect of different coating amounts (0–5wt%) for the LiNi0.6Co0.2Mn0.2O2 cathode is analyzed in detail. Results show that 2wt% coating of Li3PO4 gives better performance compared to other coating concentrations. Detailed analysis of the structure of the samples during the charge-discharge process is performed by in-situ X-ray diffraction. It is indicated that the modification for LiNi0.6Co0.2Mn0.2O2 cathode could protect the well-layered structure under high voltages. In consequence, the electrochemical performance of modified samples is greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.L. Ellis, K.T. Lee, and L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater., 22(2010), No. 3, p. 691.

    Article  CAS  Google Scholar 

  2. M.J. Lain, J. Brandon, and E. Kendrick, Design strategies for high power vs. high energy lithium ion cells, Batteries, 5(2019), No. 4, art. No. 64.

  3. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359.

    Article  CAS  Google Scholar 

  4. S.T. Myung, F. Maglia, K.J. Park, C.S. Yoon, P. Lamp, S.J. Kim, and Y.K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives, ACS Energy Lett., 2(2017), No. 1, p. 196.

    Article  CAS  Google Scholar 

  5. P.H. Xiao, T. Shi, W.X. Huang, and G. Ceder, Understanding surface densified phases in Ni-rich layered compounds, ACS Energy Lett., 4(2019), No. 4, p. 811.

    Article  CAS  Google Scholar 

  6. W. Liu, P. Oh, X.E. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54(2015), No. 15, p. 4440.

    Article  CAS  Google Scholar 

  7. A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473.

    Article  CAS  Google Scholar 

  8. J.S. Meng, H.C. Guo, C.J. Niu, Y.L. Zhao, L. Xu, Q. Li, and L.Q. Mai, Advances in structure and property optimizations of battery electrode materials, Joule, 1(2017), No. 3, p. 522.

    Article  CAS  Google Scholar 

  9. U.H. Kim, L.Y. Kuo, P. Kaghazchi, C.S. Yoon, and Y.K. Sun, Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries, ACS Energy Lett., 4(2019), No. 2, p. 576.

    Article  CAS  Google Scholar 

  10. T. Weigel, F. Schipper, E.M. Erickson, F.A. Susai, B. Markovsky, and D. Aurbach, Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations, ACS Energy Lett., 4(2019), No. 2, p. 508.

    Article  CAS  Google Scholar 

  11. Y. Lee, J. Lee, K.Y. Lee, J. Mun, J.K. Lee, and W. Choi, Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries, J. Power Sources, 315(2016), p. 284.

    Article  CAS  Google Scholar 

  12. F. Schipper, H. Bouzaglo, M. Dixit, E.M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D.T. Major, and D. Aurbach, From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries, Adv. Energy Mater., 8(2018), No. 4, art. No. 1701682.

  13. S.Y. Li, X.L. Fu, Y.W. Liang, S.X. Wang, X.N. Zhou, H. Dong, K.Y. Tuo, C.K. Gao, and X.L. Cui, Enhanced structural stability of boron-doped layered@spinel@carbon heterostructured lithium-rich manganese-based cathode materials, ACS Sustainable Chem. Eng., 8(2020), No. 25, p. 9311.

    Article  CAS  Google Scholar 

  14. N.S. Zhang, L. Ai, L.P. Mao, Y.H. Feng, Y.C. Xie, S.X. Wang, Y.W. Liang, X.L. Cui, and S.Y. Li, Understanding the role of Mg-doped on core-shell structured layered oxide LiNi0.6Co0.2Mn0.2O2, Electrochim. Acta, 319(2019), p. 822.

    Article  CAS  Google Scholar 

  15. Z.K. Zhao, Z.Y. Wen, C.L. Li, Y. Ding, Y. Jiang, F. Wu, B.R. Wu, S. Chen, and D.B. Mu, Effects of different charge cut-off voltages on the surface structure and electrochemical properties of LiNi0.6Co0.2Mn0.2O2, Electrochim. Acta, 353(2020), art. No. 136518.

  16. Z.K. Zhao, S. Chen, D.B. Mu, R. Ma, C.L. Li, B.R. Wu, F. Wu, K.L. Cheng, and C.X. Xie, Understanding the surface decoration on primary particles of nickel-rich layered LiNi0.6Co0.2Mn0.2O2 cathode material with lithium phosphate, J. Power Sources, 431(2019), p. 84.

    Article  CAS  Google Scholar 

  17. B.H. Song, W.D. Li, S.M. Oh, and A. Manthiram, Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 11, p. 9718.

    Article  CAS  Google Scholar 

  18. Y.S. Lee, W.K. Shin, A.G. Kannan, S.M. Koo, and D.W. Kim, Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer, ACS Appl. Mater. Interfaces, 7(2015), No. 25, p. 13944.

    Article  CAS  Google Scholar 

  19. Y.P. Chen, Y. Zhang, F. Wang, Z.Y. Wang, and Q. Zhang, Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating, J. Alloys Compd., 611(2014), p. 135.

    Article  CAS  Google Scholar 

  20. J.Z. Kong, H.F. Zhai, C. Ren, G.A. Tai, X.Y. Yang, F. Zhou, H. Li, J.X. Li, and Z. Tang, High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent, J. Solid State Electrochem., 18(2014), No. 1, p. 181.

    Article  Google Scholar 

  21. D. Mohanty and H. Gabrisch, Microstructural investigation of LixNi1/3Mn1/3Co1/3O2(x ≤ 1) and its aged products via magnetic and diffraction study, J. Power Sources, 220(2012), p. 405.

    Article  CAS  Google Scholar 

  22. P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, W. Chen, H.J. Guo, and X.H. Li, Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries, Powder Technol., 214(2011), No. 3, p. 279.

    Article  CAS  Google Scholar 

  23. J.C. Zhang, Z.Y. Li, R. Gao, Z.B. Hu, and X.F. Liu, High rate capability and excellent thermal stability of Li+-conductive Li2ZrO3-coated LiNi1/3Co1/3Mn1/3O2 via a synchronous lithiation strategy, J. Phys. Chem. C, 119(2015), No. 35, p. 20350.

    Article  CAS  Google Scholar 

  24. Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145.

    Article  CAS  Google Scholar 

  25. P.Y. Hou, J.M. Yin, M. Ding, J.Z. Huang, and X.J. Xu, Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives, Small, 13(2017), No. 45, art. No. 1701802.

  26. J.H. Shim, Y.M. Kim, M. Park, J. Kim, and S. Lee, Reduced graphene oxide-wrapped nickel-rich cathode materials for lithium ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 22, p. 18720.

    Article  CAS  Google Scholar 

  27. H. Wang, W.J. Ge, W. Li, F. Wang, W.J. Liu, M.Z. Qu, and G.C. Peng, Facile fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 cathode with improved cycling performance for rechargeable Li-ion battery, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 18439.

    Article  CAS  Google Scholar 

  28. S.Y. Liu, C.C. Zhang, Q.L. Su, L.Y. Li, J.M. Su, T. Huang, Y.B. Chen, and A.S. Yu, Enhancing electrochemical performance of LiNi0.6Co0.2Mn0.2O2 by lithium-ion conductor surface modification, Electrochim. Acta, 224(2017), p. 171.

    Article  CAS  Google Scholar 

  29. F. Tao, X.X. Yan, J.J. Liu, H.L. Zhang, and L. Chen, Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage, Electrochim. Acta, 210(2016), p. 548.

    Article  CAS  Google Scholar 

  30. L.W. Liang, J.B. Jiang, F. Jiang, G.R. Hu, Y.B. Cao, Z.D. Peng, and K. Du, An ordered olivine-type LiCoPO4 layer grown on LiNi0.6Mn0.2Co0.2O2 cathode materials applied to lithium-ion batteries, J. Alloys Compd., 695(2017), p. 1993.

    Article  CAS  Google Scholar 

  31. H. Liu, C. Chen, C.Y. Du, X.S. He, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, and Y.Z. Gao, Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries, J. Mater. Chem. A, 3(2015), No. 6, p. 2634.

    Article  CAS  Google Scholar 

  32. Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura and T. Ohzuku, Crystal and electronic structures of superstructural Li1−x [Co1/3Ni1/3Mn1/3]O2(0≤ x ≤1), J. Power Sources, 119–121 (2003), p. 644.

    Article  Google Scholar 

  33. T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 30(2001), No. 7, p. 642.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Guangdong Key Laboratory of Battery Safety (No. 2019B121203008), the National Natural Science Foundation of China (No. 52072036), NSAF (No. U1930113), the Beijing Natural Science Foundation (No. L182022), the 13th Five-Year Plan of Advance Research and Sharing Techniques by Equipment Department (No. 41421040202), and the China Postdoctoral Science Foundation (No. 2021TQ0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-bin Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Zk., Xie, Hl., Wen, Zy. et al. Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2. Int J Miner Metall Mater 28, 1488–1496 (2021). https://doi.org/10.1007/s12613-020-2232-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2232-8

Keywords

Navigation