Skip to main content
Log in

Precise regulation of the phase transformation for pyrolusite during the reduction roasting process

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The mechanism involved in the phase transformation process of pyrolusite (MnO2) during roasting in a reducing atmosphere was systematically elucidated in this study, with the aim of effectively using low-grade complex manganese ore resources. According to single-factor experiment results, the roasted product with a divalent manganese (Mn2+) distribution rate of 95.30% was obtained at a roasting time of 25 min, a roasting temperature of 700°C, a CO concentration of 20at%, and a total gas volume of 500 mL·min−1, in which the manganese was mainly in the form of manganosite (MnO). Scanning electron microscopy and Brunauer–Emmett–Teller theory demonstrated the microstructural evolution of the roasted product and the gradual reduction in the pyrolusite ore from the surface to the core. Thermodynamic calculations, X-ray photoelectron spectroscopy, and X-ray diffractometry analyses determined that the phase transformation of pyrolusite followed the order of MnO2→Mn2O3→Mn3O4→MnO phase by phase, and the reduction of manganese oxides in each valence state proceeded simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kozlowska, M. Morawiec, R.H. Petrov, and A. Grajcar, Microstructure evolution of medium-manganese Al-alloyed steel manufactured by double-step intercritical annealing: Effects of heating and cooling rates, Mater. Charact., 199(2023), art. No. 112816.

  2. W. Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 782.

    Article  CAS  Google Scholar 

  3. M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1431.

    Article  CAS  Google Scholar 

  4. Y.H. Liu, Y.D. Ma, W.T. Yang, S.J. Bao, H. Chen, and M.W. Xu, Spontaneously dissolved MnO: A better cathode material for rechargeable aqueous zinc-manganese batteries, Chem. Eng. J., 473(2023), art. No. 145490.

  5. Y.Y. Zhang, X.H. Chen, and H.Y. Tan, Effect of ultrasonic treatment on the morphology and corrosion resistance of zinc-manganese phosphate coatings on 16Mn steel in 3.5 % sodium chloride, Int. J. Electrochem. Sci., 18(2023), No. 9, art. No. 100274.

  6. N.H. Lee, P.W. Kao, T.Y. Tseng, and J.R. Su, Effect of manganese addition on the tensile properties of cold-rolled and recovery-annealed aluminum alloy sheets, Mater. Sci. Eng. A, 535(2012), p. 297.

    Article  CAS  Google Scholar 

  7. N. Katayama and Y. Obora, Recent developments in alkene hydrosilylation utilizing manganese catalysts, Tetrahedron Lett., 132(2023), art. No. 154798.

  8. A.K. Sehgal, C. Juneja, J. Singh, and S. Kalsi, Comparative analysis and review of materials properties used in aerospace Industries: An overview, Mater. Today Proc., 48(2022), p. 1609.

    Article  CAS  Google Scholar 

  9. M.G. Lei, B.Z. Ma, D.Y. Lv, C.Y. Wang, E. Asselin, and Y.Q. Chen, A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration, Hydrometallurgy, 199(2021), art. No. 105533.

  10. B.B. Liu, Y.B. Zhang, M.M. Lu, Z.J. Su, G.H. Li, and T. Jiang, Extraction and separation of manganese and iron from ferruginous manganese ores: A review, Miner. Eng., 131(2019), p. 286.

    Article  CAS  Google Scholar 

  11. A.P. Das, L.B. Sukla, N. Pradhan, and S. Nayak, Manganese biomining: A review, Bioresour. Technol., 102(2011), No. 16, p. 7381.

    Article  CAS  Google Scholar 

  12. S.P. Yang, J.H. Li, W.B. Gao, and H.J. Liu, Optimization of manganese-rich slag extraction from low-manganese ore smelting by response surface methodology, J. Iron Steel Res. Int., 29(2022), No. 10, p. 1573.

    Article  CAS  Google Scholar 

  13. H.M. Baioumy, M.Z. Khedr, and A.H. Ahmed, Mineralogy, geochemistry and origin of Mn in the high-Mn iron ores, Bahariya Oasis, Egypt, Ore Geol. Rev., 53(2013), p. 63.

    Article  Google Scholar 

  14. V. Singh, T. Chakraborty, and S.K. Tripathy, A review of low grade manganese ore upgradation processes, Miner. Process. Extr. Metall. Rev., 41(2020), No. 6, p. 417.

    Article  CAS  Google Scholar 

  15. L.H. Gao, Z.G. Liu, M.S. Chu, R. Wang, Z.H. Wang, and C. Feng, Upgrading of low-grade manganese ore based on reduction roasting and magnetic separation technique, Sep. Sci. Technol., 54(2019), No. 1, p. 195.

    Article  CAS  Google Scholar 

  16. S.F. Xiong, X. Li, P.L. Liu, et al., Recovery of manganese from low-grade pyrolusite ore by reductively acid leaching process using lignin as a low cost reductant, Miner. Eng., 125(2018), p. 126.

    Article  CAS  Google Scholar 

  17. W.S. Zhang and C.Y. Cheng, Manganese metallurgy review. Part I: Leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide, Hydrometallurgy, 89(2007), No. 3–4, p. 137.

    Article  CAS  Google Scholar 

  18. J.R. Ju, Y.L. Feng, H.R. Li, H. Yu, H. Wu, and S.L. Liu, The limiting effect of manganese phase of oceanic cobalt-rich crust reduction by sawdust in acid leaching, Sustainable Chem. Pharm., 19(2021), art. No. 100346.

  19. F. Pagnanelli, M. Garavini, F. Vegliò, and L. Toro, Preliminary screening of purification processes of liquor leach solutions obtained from reductive leaching of low-grade manganese ores, Hydrometallurgy, 71(2004), No. 3–4, p. 319.

    Article  CAS  Google Scholar 

  20. G. Chen, Y.Q. Ling, Q.N. Li, et al., Investigation on microwave carbothermal reduction behavior of low-grade pyrolusite, J. Mater. Res. Technol., 9(2020), No. 4, p. 7862.

    Article  CAS  Google Scholar 

  21. S. Ali, Y. Iqbal, I. Khan, et al., Hydrometallurgical leaching and kinetic modeling of low-grade manganese ore with banana peel in sulfuric acid, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 193.

    Article  CAS  Google Scholar 

  22. N.J. Welham, Activation of the carbothermic reduction of manganese ore, Int. J. Miner. Process., 67(2002), No. 1–4, p. 187.

    Article  CAS  Google Scholar 

  23. L.Z. Granina, V.D. Mats, and M.A. Phedorin, Iron-manganese formations in the Baikal region, Russ. Geol. Geophys., 51(2010), No. 6, p. 650.

    Article  Google Scholar 

  24. J. Wen, H.Y. Sun, T. Jiang, B.J. Chen, F.F. Li, and M.X. Liu, Comparison of the interface reaction behaviors of CaO-V2O5 and MnO2-V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 834.

    Article  CAS  Google Scholar 

  25. D.L. Fan and P.J. Yang, Introduction to and classification of manganese deposits of China, Ore Geol. Rev., 15(1999), No. 1–3, p. 1.

    Article  CAS  Google Scholar 

  26. A.A. Nayl, I.M. Ismail, and H.F. Aly, Recovery of pure MnSO4·H2O by reductive leaching of manganese from pyrolusite ore by sulfuric acid and hydrogen peroxide, Int. J. Miner. Process., 100(2011), No. 3–4, p. 116.

    Article  CAS  Google Scholar 

  27. M.K. Sinha and W. Purcell, Reducing agents in the leaching of manganese ores: A comprehensive review, Hydrometallurgy, 187(2019), p. 168.

    Article  CAS  Google Scholar 

  28. P. Perreault, and G.S. Patience, Pyrolusite–CO reduction kinetics, Chem. Eng. J., 295(2016), p. 227.

    Article  CAS  Google Scholar 

  29. H.H.A. El-Gawad, M.M. Ahmed, N.A. El-Hussiny, and M.E.H. Shalabi, Reduction of low grade Egyptian manganese ore via hydrogen at 800°C–950°C, Open Access Lib. J, 1(2014), No. 4, p. 1.

    Google Scholar 

  30. J. Zhan, Z.J. Wang, C.F. Zhang, J.Y. Hwang, and C.P. Xia, Separation and extraction of bismuth and manganese from roasted low-grade bismuthinite and pyrolusite: Thermodynamic analysis and sulfur fixing, JOM, 67(2015), No. 5, p. 1114.

    Article  CAS  Google Scholar 

  31. X.K. Tian, X.X. Wen, C. Yang, Y.J. Liang, Z.B. Pi, and Y.X. Wang, Reductive leaching of manganese from low-grade manganese dioxide ores using corncob as reductant in sulfuric acid solution, Hydrometallurgy, 100(2010), No. 3–4, p. 157.

    Article  CAS  Google Scholar 

  32. L.B. Wang, Y.M. Xu, H. Tian, and Y.G. Du, Co-treatment of chromite ore processing residue and pyrolusite for simultaneous detoxification and resource utilization, J. Environ. Chem. Eng., 11(2023), No. 3, art. No. 109785.

  33. F. Teng, S.H. Luo, W.N. Mu, et al., Manganese extraction from low-grade pyrolusite by roasting with H2SO4, JOM, 70(2018), No. 10, p. 2008.

    Article  CAS  Google Scholar 

  34. J.R. Ju, Y.L. Feng, H.R. Li, and X.F. Zhong, Efficient extraction of manganese from low-grade pyrolusite by a sawdust pyrolysis reduction roasting-acid leaching process, JOM, 74(2022), No. 5, p. 1978.

    Article  CAS  Google Scholar 

  35. K.D. Yang, X.J. Ye, J. Su, et al., Response surface optimization of process parameters for reduction roasting of low-grade pyrolusite by bagasse, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 548.

    Article  CAS  Google Scholar 

  36. S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Convers. Manag., 45(2004), No. 5, p. 651.

    Article  CAS  Google Scholar 

  37. H.Q. Zhang, P.F. Zhang, F. Zhou, and M.M. Lu, Application of multi-stage dynamic magnetizing roasting technology on the utilization of cryptocrystalline oolitic hematite: A review, Int. J. Min. Sci. Technol., 32(2022), No. 4, p. 865.

    Article  CAS  Google Scholar 

  38. Z.D. Tang, P.Y. Li, P. Gao, Y.J. Li, and Y.X. Han, Minerals phase transformation by hydrogen reduction technology: A new approach to recycle iron from refractory limonite for reducing carbon emissions, Adv. Powder Technol., 33(2022), No. 12, art. No. 103870.

  39. X. Zhang, L. Zhao, W.X. Zhou, X.W. Liu, Z.Y. Hu, and K. Wang, Variations in the multilevel structure, gelatinization and digestibility of litchi seed starches from different varieties, Foods, 11(2022), No. 18, art. No. 2821.

  40. X.L. Zhang, Y.X. Han, Y.J. Li, W.B. Li, J.C. He, and J.P. Jin, Strengthening the flotation recovery of silver using a special ceramic-medium stirred mill, Powder Technol., 406(2022), art. No. 117585.

  41. E. Epifano and D. Monceau, Ellingham diagram: A new look at an old tool, Corros. Sci., 217(2023), art. No. 111113.

  42. P.C. Hayes and P. Grieveson, The effects of nucleation and growth on the reduction of Fe2O3 to Fe3O4, Metall. Trans. B, 12(1981), No. 2, p. 319.

    Article  Google Scholar 

  43. M. Et-Tabirou, B. Dupré, and C. Gleitzer, Hematite single crystal reduction into magnetite with CO-CO2, Metall. Trans. B, 19(1988), No. 2, p. 311.

    Article  Google Scholar 

  44. S. Yuan, R.F. Wang, Q. Zhang, Y.J. Li, and P. Gao, Extraction and phase transformation of iron in fine-grained complex hematite ore by suspension magnetizing roasting and magnetic separation, Korean J. Chem. Eng., 39(2022), No. 7, p. 1891.

    Article  CAS  Google Scholar 

  45. H.Y. Yang, X.B. Tang, X.S. Luo, G.B. Li, H. Liang, and S. Snyder, Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms, J. Hazard. Mater., 415(2021), art. No. 125707.

  46. E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, and S.N. Kerisit, XPS determination of Mn oxidation states in Mn (hydr)oxides, Appl. Surf. Sci., 366(2016), p. 475.

    Article  CAS  Google Scholar 

  47. K.Q. Li, Q. Jiang, G. Chen, et al., Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends, Bioresour. Technol., 319(2021), art. No. 124172.

  48. Q. Zhang, Y.S. Sun, S. Wang, Y.X. Han, W.B. Li, and Y.J. Li, Whether magnetization roasting requires complete phase reconstruction of iron minerals: A study of phase transition and microstructure evolution, Powder Technol., 411(2022), art. No. 117934.

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2023YFC 2909000), the National Natural Science Foundation of China (No. 52174240), and the Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2023-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Ethics declarations

Shuai Yuan is a youth editorial board member for IJMMM and is not involved in the editorial review or the decision to publish this article. All authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Gao, P., Yuan, S. et al. Precise regulation of the phase transformation for pyrolusite during the reduction roasting process. Int J Miner Metall Mater 31, 81–90 (2024). https://doi.org/10.1007/s12613-023-2688-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2688-4

Keywords

Navigation