Skip to main content

Advertisement

Log in

A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Growing electromagnetic pollution has plagued researchers in the field of electromagnetic (EM) energy dissipation for many years; it is increasingly important to solve this problem efficiently. Metal—organic frameworks (MOFs), a shining star of functional materials, have attracted great attention for their advantages, which include highly tunable porosity, structure, and versatility. MOF-derived electromagnetic wave (EMW) absorbers, with advantages such as light weight, thin matching thickness, strong capacity, and wide effective bandwidth, are widely reported. However, current studies lack a systematic summary of the ternary synergistic effects of the precursor component—structure—EMW absorption behavior of MOF derivatives. Here we describe in detail the electromagnetic (EM) energy dissipation mechanism and strategy for preparing MOF-derived EMW absorbers. On the basis of this description, the following means are suggested for adjusting the EM parameters of MOF derivatives, achieving excellent EM energy dissipation: (1) changing the metal and ligands to regulate the chemical composition and morphology of the precursor, (2) controlling pyrolysis parameters (including temperature, heating rate, and gas atmosphere) to manipulate the structure and components of derivatives, and (3) compounding with enhancement phases, including carbon nanomaterials, metals, or other MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lv, Z. Yang, S.J.H. Ong, et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900163.

  2. H. Lv, Z. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. 1706343.

  3. Z. Lou, Q. Wang, U.I. Kara, et al., Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers, Nano-Micro Lett., 14(2021), No. 1, art. No. 11.

  4. B. Yang, J. Fang, C. Xu, et al., One-dimensional magnetic Fe-CoNi alloy toward low-frequency electromagnetic wave absorption, Nano-Micro Lett., 14(2022), No. 1, art. No. 170.

  5. M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang, and J. Yuan, Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy, Adv. Mater., 32(2020), No. 10, art. No. 1907156.

  6. K. Li, S. Jin, Y. Zhou, et al., Bioinspired dual-crosslinking strategy for fabricating soy protein-based adhesives with excellent mechanical strength and antibacterial activity, Composites Part B, 240(2022), art. No. 109987.

  7. Z. Xiang, Y. Shi, X. Zhu, L. Cai, and W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion, Nano-Micro Lett., 13(2021), No. 1, art. No. 150.

  8. Z. Ling, J. Zhao, Y. Xie, et al., Facile nanofibrillation of strong bamboo holocellulose via mild acid-assisted DES treatment, Ind. Crops Prod., 187(2022), art. No. 115485.

  9. P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812.

  10. X. Li, W. You, C. Xu, et al., 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization, Nano-Micro Lett., 13(2021), No. 1, art. No. 157.

  11. K. Li, S.C. Jin, S.C. Jiang, et al., Bioinspired mineral-organic strategy for fabricating a high-strength, antibacterial, flame-retardant soy protein bioplastic via internal boron-nitrogen coordination, Chem. Eng. J., 428(2022), art. No. 132616.

  12. Z. Ling, J. Chen, X.Y. Wang, et al., Nature-inspired construction of iridescent CNC/Nano-lignin films for UV resistance and ultra-fast humidity response, Carbohydr. Polym., 296(2022), art. No. 119920.

  13. Z.L. Zhang, L. Zhang, X.Q. Chen, et al., Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band, J. Magn. Magn. Mater., 497(2020), art. No. 166075.

  14. Z.C. Lou, Q.Y. Wang, X.D. Zhou, et al., An angle-insensitive electromagnetic absorber enabling a wideband absorption, J. Mater. Sci. Technol., 113(2022), p. 33.

    Article  Google Scholar 

  15. X. Li, Y.F. Zhu, X.Q. Liu, B.B. Xu, and Q.Q. Ni, A broadband and tunable microwave absorption technology enabled by VGCFs/PDMS-EP shape memory composites, Compos. Struct., 238(2020), art. No. 111954.

  16. Q. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486.

    Article  CAS  Google Scholar 

  17. T. Liu, Y. Pang, M. Zhu, and S. Kobayashi, Microporous Co@CoO nanoparticles with superior microwave absorption properties, Nanoscale, 6(2014), No. 4, p. 2447.

    Article  CAS  Google Scholar 

  18. Z.C. Lou, Q.Y. Wang, W. Sun, et al., Regulating lignin content to obtain excellent bamboo-derived electromagnetic wave absorber with thermal stability, Chem. Eng. J., 430(2022), art. No. 133178.

  19. Z.C. Lou, X. Han, J. Liu, et al., Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions, Composites Part B, 226(2021), art. No. 109335.

  20. R.X. Deng, B.B. Chen, H.G. Li, et al., MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption, Appl. Surf. Sci., 488(2019), p. 921.

    Article  CAS  Google Scholar 

  21. Z.C. Lou, Q.Y. Wang, Y. Zhang, et al., In-situ formation of low-dimensional, magnetic core—shell nanocrystal for electromagnetic dissipation, Composites Part B, 214(2021), art. No. 108744.

  22. Z.C. Lou, T.C. Yuan, Q.Y. Wang, et al., Fabrication of crack-free flattened bamboo and its macro-/micro-morphological and mechanical properties, J. Renew. Mater., 9(2021), No. 5, p. 959.

    Article  CAS  Google Scholar 

  23. Z.J. Yang, Y. Zhang and B.Y. Wen, Enhanced electromagnetic interference shielding capability in bamboo fiber@polyaniline composites through microwave reflection cavity design, Compos. Sci. Technol., 178(2019), p. 41.

    Article  CAS  Google Scholar 

  24. J. Yan, Y. Huang, X.D. Liu, et al., Polypyrrole-based composite materials for electromagnetic wave absorption, Polym. Rev., 61(2021), No. 3, p. 646.

    Article  CAS  Google Scholar 

  25. C.P. Mu, J.F. Song, B.C. Wang, et al., Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption, Nanotechnology, 29(2018), No. 2, art. No. 025704.

  26. H.L. Lv, Y. Li, Z.R. Jia, et al., Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption, Composites Part B, 196(2020), art. No. 108122.

  27. F. Sultanov, C. Daulbayev, B. Bakbolat, and O. Daulbayev, Advances of 3D graphene and its composites in the field of microwave absorption, Adv. Colloid Interface Sci., 285(2020), art. No. 102281.

  28. X. Li, W.B. You, L. Wang, et al., Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property, ACS Appl. Mater. Interfaces, 11(2019), No. 47, p. 44536.

    Article  CAS  Google Scholar 

  29. M.S. Cao, Y.Z. Cai, P. He, J.C. Shu, W.Q. Cao, and J. Yuan, 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding, Chem. Eng. J., 359(2019), p. 1265.

    Article  CAS  Google Scholar 

  30. H.F. Pang, Y.P. Duan, L.X. Huang, et al., Research advances in composition, structure and mechanisms of microwave absorbing materials, Composites Part B, 224(2021), art. No. 109173.

  31. F. Qin and C. Brosseau, Comment on “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”, Appl. Phys. Lett., 98(2011), art. No. 072906.

  32. Z.T. Zhu, X. Sun, H.R. Xue, et al., Graphene-carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties, J. Mater. Chem. C, 2(2014), No. 32, p. 6582.

    Article  CAS  Google Scholar 

  33. H.T. Guan, Q.Y. Wang, X.F. Wu, et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials, Composites Part B, 207(2021), art. No. 108562.

  34. R.G. Liu, Y.X. Li, C.H. Li, et al., High performance microwave absorption through multi-scale metacomposite by intergrating Ni@C nanocapsules with millimetric polystyrene sphere, J. Phys. D: Appl. Phys., 51(2018), No. 36, art. No. 365303.

  35. J.Q. Wang, Q. Li, J.Q. Ren, A.B. Zhang, Q.Y. Zhang, and B.L. Zhang, Synthesis of bowknot-like N-doped Co@C magnetic nanoparticles constituted by acicular structural units for excellent microwave absorption, Carbon, 181(2021), p. 28.

    Article  CAS  Google Scholar 

  36. Y.H. Chen, Z.H. Huang, M.M. Lu, et al., 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity, J. Mater. Chem. A, 3(2015), No. 24, p. 12621.

    Article  CAS  Google Scholar 

  37. Y.P. Wang, Z. Peng, Y.C. Jiao, and W. Jiang, Synthesis of Fe3O4@ZnO/RGO nanocomposites and microwave absorption properties, [in] 2015 IEEE 15th International Conference on Nanotechnology, Rome, 2015, p. 220.

  38. L. Wang, Y. Huang, X. Sun, et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures, Nanoscale, 6(2014), No. 6, p. 3157.

    Article  CAS  Google Scholar 

  39. Z.C. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571.

  40. S.S. Kim, S.T. Kim, Y.C. Yoon, and K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies, J. Appl. Phys., 97(2005), No. 10, art. No. 10F905.

  41. Z. Ling, J.M. Ma, S. Zhang, L.P. Shao, C. Wang, and J.F. Ma, Stretchable and fatigue resistant hydrogels constructed by natural galactomannan for flexible sensing application, Int. J. Biol. Macromol., 216(2022), p. 193.

    Article  CAS  Google Scholar 

  42. Y. Zhang, Y. Huang, T.F. Zhang, et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam, Adv. Mater., 27(2015), No. 12, p. 2049.

    Article  CAS  Google Scholar 

  43. H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24.

  44. O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim, Reticular synthesis and the design of new materials, Nature, 423(2003), No. 6941, p. 705.

    Article  CAS  Google Scholar 

  45. H. Furukawa, K.E. Cordova, M. O’Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444.

  46. X.D. Zhou, H. Han, Y.C. Wang, H.L. Lv and Z.C. Lou, Silicon-coated fibrous network of carbon nanotube/iron towards stable and wideband electromagnetic wave absorption, J. Mater. Sci. Technol., 121(2022), p. 199.

    Article  Google Scholar 

  47. D. Saha and S. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci., 348(2010), No. 2, p. 615.

    Article  CAS  Google Scholar 

  48. O. Kadioglu and S. Keskin, Efficient separation of helium from methane using MOF membranes, Sep. Purif. Technol., 191(2018), p. 192.

    Article  CAS  Google Scholar 

  49. S.L. Qiu, M. Xue and G.S. Zhu, Metal-organic framework membranes: From synthesis to separation application, Chem. Soc. Rev., 43(2014), No. 16, p. 6116.

    Article  CAS  Google Scholar 

  50. Z.C. Hu, B.J. Deibert, and J. Li, Luminescent metal-organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev., 43(2014), No. 16, p. 5815.

    Article  CAS  Google Scholar 

  51. W.P. Lustig, S. Mukherjee, N.D. Rudd, A.V. Desai, J. Li, and S.K. Ghosh, Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev., 46(2017), No. 11, p. 3242.

    Article  CAS  Google Scholar 

  52. A.R. Millward and O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127(2005), No. 51, p. 17998.

    Article  CAS  Google Scholar 

  53. M. Eddaoudi, J. Kim, N. Rosi, et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295(2002), No. 5554, p. 469.

    Article  CAS  Google Scholar 

  54. H.K. Chae, D.Y. Siberio-Pérez, J. Kim, et al., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427(2004), No. 6974, p. 523.

    Article  CAS  Google Scholar 

  55. J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, and J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38(2009), No. 5, p. 1450.

    Article  CAS  Google Scholar 

  56. G. Férey, C. Mellot-Draznieks, C. Serre, et al., A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309(2005), No. 5743, p. 2040.

    Article  Google Scholar 

  57. L.S. Xie, G. Skorupskii, and M. Dinca, Electrically conductive metal-organic frameworks, Chem. Rev., 120(2020), No. 16, p. 8536.

    Article  CAS  Google Scholar 

  58. Y.J. Cui, B. Li, H.J. He, W. Zhou, B.L. Chen and G.D. Qian, Metal-organic frameworks as platforms for functional materials, Acc. Chem. Res., 49(2016), No. 3, p. 483.

    Article  CAS  Google Scholar 

  59. R.R. Salunkhe, Y.V. Kaneti, and Y. Yamauchi, Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects, ACS Nano, 11(2017), No. 6, p. 5293.

    Article  CAS  Google Scholar 

  60. F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43.

  61. H.C. Wang, L. Xiang, W. Wei, J. An, J. He, C.H. Gong, and Y.L. Hou, Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles, ACS Appl. Mater. Interfaces, 9(2017), No. 48, p. 42012.

    Article  Google Scholar 

  62. H.Q. Zhao, Y. Cheng, H.L. Lv, B.S. Zhang, G.B. Ji and Y.W. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 15850.

    Article  CAS  Google Scholar 

  63. X.F. Zhang, X.L. Dong, H. Huang, et al., Microwave absorption properties of the carbon-coated nickel nanocapsules, Appl. Phys. Lett., 89(2006), No. 5, art. No. 053115.

  64. F. Qin and C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles, J. Appl. Phys., 111(2012), No. 6, art. No. 061301.

  65. K. Li, S. Jin, X. Li, S.Q. Shi, and J. Li, A green bio-inspired chelating design for improving the electrical conductivity of flexible biopolymer-based composites, J. Clean. Prod., 285(2021), art. No. 125504.

  66. J.R. Ma, X.X. Wang, W.Q. Cao, et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures, Chem. Eng. J., 339(2018), p. 487.

    Article  CAS  Google Scholar 

  67. J. Frenkel and J. Doefman, Spontaneous and induced magnetisation in ferromagnetic bodies, Nature, 126(1930), No. 3173, p. 274.

    Article  Google Scholar 

  68. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401.

    Article  CAS  Google Scholar 

  69. T.J. Lewis, Interfaces: Nanometric dielectrics, J. Phys. D: Appl. Phys., 38(2005), No. 2, p. 202.

    Article  CAS  Google Scholar 

  70. Y. Sun, B. Zhou, H.P. Wang, et al., Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core—shell FeCo@Fe3O4 nanoparticle for improved microwave absorption, Carbon, 186(2022), p. 333.

    Article  CAS  Google Scholar 

  71. M. Zhang, M.S. Cao, J.C. Shu, W.Q. Cao, L. Li, and J. Yuan, Electromagnetic absorber converting radiation for multifunction, Mater. Sci. Eng. R, 145(2021), art. No. 100627.

  72. R.B. Hilborn, Maxwell-Wagner polarization in sintered compacts of ferric oxide, J. Appl. Phys., 36(1965), No. 5, p. 1553.

    Article  CAS  Google Scholar 

  73. X.L. Dong, X.F. Zhang, H. Huang, and F. Zuo, Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations, Appl. Phys. Lett., 92(2008), No. 1, art. No. 013127.

  74. K. Schulten and P.G. Wolynes, Semiclassical description of electron spin motion in radicals including the effect of electron hopping, J. Chem. Phys., 68(1978), No. 7, p. 3292.

    Article  CAS  Google Scholar 

  75. L. Wang, X. Li, X.F. Shi, et al., Recent progress of microwave absorption microspheres by magnetic—dielectric synergy, Nanoscale, 13(2021), No. 4, p. 2136.

    Article  CAS  Google Scholar 

  76. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, and Z.D. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules, Appl. Phys. Lett., 92(2008), No. 17, art. No. 173117.

  77. Y.Z. Jiao, F. Wu, A. Xie, et al., Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption, Chem. Eng. J., 398(2020), art. No. 125591.

  78. Y.F. Pan, G.S. Wang, L. Liu, L. Guo, and S.H. Yu, Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride, Nano Res., 10(2017), No. 1, p. 284.

    Article  CAS  Google Scholar 

  79. G. Fang, C. Liu, Y. Yang, et al., Regulating percolation threshold via dual conductive phases for high-efficiency microwave absorption performance in C and X bands, ACS Appl. Mater. Interfaces, 13(2021), No. 31, p. 37517.

    Article  CAS  Google Scholar 

  80. J.L. Liu, H.S. Liang, and H.J. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance, Compos. A Appl. Sci. Manuf., 130(2020), art. No. 105760.

  81. C. Kittel, On the theory of ferromagnetic resonance absorption, Phys. Rev., 73(1948), No. 2, p. 155.

    Article  CAS  Google Scholar 

  82. G.X. Tong, Y. Liu, T.T. Cui, Y.N. Li, Y.T. Zhao and J.G. Guan, Tunable dielectric properties and excellent microwave absorbing properties of elliptical Fe3O4 nanorings, Appl. Phys. Lett., 108(2016), No. 7, art. No. 072905.

  83. Y.P. Shi, M.M. Zhang, X.F. Zhang, et al., Achieving excellent metallic magnet-based absorbents by regulating the eddy current effect, J. Appl. Phys., 126(2019), No. 10, art. No. 105109.

  84. T. Wang, R. Han, G.G. Tan, J.Q. Wei, L. Qiao and F.S. Li, Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite, J. Appl. Phys., 112(2012), No. 10, art. No. 104903.

  85. Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598.

    Article  CAS  Google Scholar 

  86. F. Qin and H.X. Peng, Ferromagnetic microwires enabled multifunctional composite materials, Prog. Mater. Sci., 58(2013), No. 2, p. 183.

    Article  CAS  Google Scholar 

  87. P.A. Yang, Y.X. Huang, R. Li, et al., Optimization of Fe@Ag core—shell nanowires with improved impedance matching and microwave absorption properties, Chem. Eng. J., 430(2022), art. No. 132878.

  88. S. Bao, W. Tang, Z.J. Song, Q.R. Jiang, Z.Y. Jiang, and Z.X. Xie, Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance, Nanoscale, 12(2020), No. 36, p. 18790.

    Article  CAS  Google Scholar 

  89. Q.M. Hu, R.L. Yang, Z.C. Mo, et al., Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance, Carbon, 153(2019), p. 737.

    Article  CAS  Google Scholar 

  90. X. Li, L. Yu, W. Zhao, et al., Prism-shaped hollow carbon decorated with polyaniline for microwave absorption, Chem. Eng. J., 379(2020), art. No. 122393.

  91. D.W. Liu, Y.C. Du, Z.N. Li, et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties, J. Mater. Chem. C, 6(2018), No. 36, p. 9615.

    Article  CAS  Google Scholar 

  92. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. Vaibhav Srivastava, Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model, J. Appl. Phys., 115(2014), No. 10, art. No. 104503.

  93. Y. Wang, X.C. Di, Y.Q. Fu, X.M. Wu and J.T. Cao, Facile synthesis of the three-dimensional flower-like ZnFe2O4@MoS2 composite with heterogeneous interfaces as a high-efficiency absorber, J. Colloid Interface Sci., 587(2021), p. 561.

    Article  CAS  Google Scholar 

  94. M. Ding, X. Cai, and H.L. Jiang, Improving MOF stability: Approaches and applications, Chem. Sci., 10(2019), No. 44, p. 10209.

    Article  CAS  Google Scholar 

  95. M. Zhong, L.J. Kong, N. Li, Y.Y. Liu, J. Zhu, and X.H. Bu, Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries, Coord. Chem. Rev., 388(2019), p. 172.

    Article  CAS  Google Scholar 

  96. Y.C. Du, T. Liu, B. Yu, et al., The electromagnetic properties and microwave absorption of mesoporous carbon, Mater. Chem. Phys., 135(2012), No. 2–3, p. 884.

    Article  CAS  Google Scholar 

  97. P. Ge, H.S. Hou, S.J. Li, L. Yang, and X.B. Ji, Tailoring rodlike FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage, Adv. Funct. Mater., 28(2018), No. 30, art. No. 1801765.

  98. Y.C. Yin, X.F. Liu, X.J. Wei, R.H. Yu, and J.L. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: A lightweight, ultrathin, and highly efficient electromagnetic wave absorber, ACS Appl. Mater. Interfaces, 8(2016), No. 50, p. 34686.

    Article  CAS  Google Scholar 

  99. W. Liu, Q.W. Shao, G.B. Ji, et al., Metal-organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber, Chem. Eng. J., 313(2017), p. 734.

    Article  CAS  Google Scholar 

  100. M. Han, Q. Liu, J. He, Y. Song, Z. Xu, and J.M. Zhu, Controllable synthesis and magnetic properties of cubic and hexagonal phase nickel nanocrystals, Adv. Mater., 19(2007), No. 8, p. 1096.

    Article  CAS  Google Scholar 

  101. Y. Zhang, H.B. Zhang, X. Wu, Z. Deng, E. Zhou, and Z.Z. Yu, Nanolayered cobalt@carbon hybrids derived from metal-organic frameworks for microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 4, p. 2325.

    Article  CAS  Google Scholar 

  102. Y.Y. Lü, Y.T. Wang, H.L. Li, et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties, ACS Appl. Mater. Interfaces, 7(2015), No. 24, p. 13604.

    Article  Google Scholar 

  103. W. Liu, J.C. Liu, Z.H. Yang, and G.B. Ji, Extended working frequency of ferrites by synergistic attenuation through a controllable carbothermal route based on Prussian blue shell, ACS Appl. Mater. Interfaces, 10(2018), No. 34, p. 28887.

    Article  CAS  Google Scholar 

  104. X.H. Liang, G.H. Wang, W.H. Gu and G.B. Ji, Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption, Carbon, 177(2021), p. 97.

    Article  CAS  Google Scholar 

  105. T.G. Zhu, Y. Sun, Y.J. Wang, et al., A MOF-driven porous iron with high dielectric loss and excellent microwave absorption properties, J Mater Sci: Mater Electron, 31(2020), No. 9, p. 6843.

    CAS  Google Scholar 

  106. Z. Xiang, Y.M. Song, J. Xiong, et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks, Carbon, 142(2019), p. 20.

    Article  CAS  Google Scholar 

  107. Y.Z. Wan, J. Xiao, C.Y. Li, et al., Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies, J. Magn. Magn. Mater., 399(2016), p. 252.

    Article  CAS  Google Scholar 

  108. X.A. Li, B. Zhang, C.H. Ju, X.J. Han, Y.C. Du, and P. Xu, Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors, J. Phys. Chem. C, 115(2011), No. 25, p. 12350.

    Article  CAS  Google Scholar 

  109. X. Li, L. Wang, W.B. You, et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units, Nanoscale, 11(2019), No. 6, p. 2694.

    Article  CAS  Google Scholar 

  110. Q. Liu, X. Xu, W. Xia, et al., Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography, Nanoscale, 7(2015), No. 5, p. 1736.

    Article  CAS  Google Scholar 

  111. Y. Liao, G.H. He, and Y.P. Duan, Morphology-controlled self-assembly synthesis and excellent microwave absorption performance of MnO2 microspheres of fibrous flocculation, Chem. Eng. J., 425(2021), art. No. 130512.

  112. Y. Cheng, Y. Zhao, H.Q. Zhao, et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties, Chem. Eng. J., 372(2019), p. 390.

    Article  CAS  Google Scholar 

  113. M.Q. Huang, L. Wang, K. Pei, et al., Multidimension-control-lable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption, Small, 16(2020), No. 14, art. No. 2000158.

  114. Z.C. Zhang, Y.F. Chen, S. He, et al., Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions, Angew. Chem. Int. Ed., 53(2014), No. 46, p. 12517.

    CAS  Google Scholar 

  115. X.J. Wang, H.G. Zhang, H.H. Lin, et al., Directly converting Fe-doped metal-organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid, Nano Energy, 25(2016), p. 110.

    Article  CAS  Google Scholar 

  116. P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban, and J. Kong, Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology, Adv. Mater. Interfaces, 7(2020), No. 4, art. No. 1901820.

  117. W.J. Lu, X.T. Guo, Y.Q. Luo, Q. Li, R.M. Zhu, and H. Pang, Core-shell materials for advanced batteries, Chem. Eng. J., 355(2019), p. 208.

    Article  CAS  Google Scholar 

  118. Y. Qiu, Y. Lin, H.B. Yang, L. Wang, M.Q. Wang, and B. Wen, Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207.

  119. Q. Tang, L.L. Gao, B. Yu, and H.L. Cong, Fabrication of core—shell TiO2@SiO2 composites and investigation on its photocatalytic performance of methyl orange from aqueous solution, Integr. Ferroelectr., 179(2017), No. 1, p. 159.

    Article  CAS  Google Scholar 

  120. T.Q. Hou, B.B. Wang, Z.R. Jia, et al., A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective, J Mater Sci: Mater Electron, 30(2019), No. 12, p. 10961.

    CAS  Google Scholar 

  121. J. Huo, L. Wang, and H.J. Yu, Polymeric nanocomposites for electromagnetic wave absorption, J. Mater. Sci., 44(2009), No. 15, p. 3917.

    Article  CAS  Google Scholar 

  122. J.W. Liu, J.J. Xu, R.C. Che, H.J. Chen, M.M. Liu, and Z.W. Liu, Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties, Chem. A Eur. J., 19(2013), No. 21, p. 6746.

    Article  CAS  Google Scholar 

  123. L. Wang, X.F. Yu, X. Li, J. Zhang, M. Wang and R.C. Che, MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption, Chem. Eng. J., 383(2020), art. No. 123099.

  124. K. Li, S.C. Jin, F.D. Zhang, et al., Bioinspired phenol-amine chemistry for developing bioadhesives based on biomineralized cellulose nanocrystals, Carbohydr. Polym., 296(2022), art. No. 119892.

  125. X.L. Wang, Q.Y. Geng, G.M. Shi, Y.J. Zhang, and D. Li, MOF-derived yolk-shell Ni/C architectures assembled with Ni@C core—shell nanoparticles for lightweight microwave absorbents, CrystEngComm, 22(2020), No. 41, p. 6796.

    Article  Google Scholar 

  126. D. Li, H.Y. Liao, H. Kikuchi, and T. Liu, Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness, ACS Appl. Mater. Interfaces, 9(2017), No. 51, p. 44704.

    Article  CAS  Google Scholar 

  127. J.Q. Tao, J.T. Zhou, Z.J. Yao, et al., Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties, Carbon, 172(2021), p. 542.

    Article  CAS  Google Scholar 

  128. X. Meng, Y.Q. Liu, G.H. Han, W.W. Yang, and Y.S. Yu, Three-dimensional (Fe3O4/ZnO)@C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption, Carbon, 162(2020), p. 356.

    Article  CAS  Google Scholar 

  129. M.G. Todd and F.G. Shi, Validation of a novel dielectric constant simulation model and the determination of its physical parameters, Microelectron. J., 33(2002), No. 8, p. 627.

    Article  CAS  Google Scholar 

  130. S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, and P.B. Liu, MOFs derived magnetic porous carbon microspheres constructed by core—shell Ni@C with high-performance microwave absorption, J. Mater. Sci. Technol., 88(2021), p. 56.

    Article  CAS  Google Scholar 

  131. K.F. Wang, Y.J. Chen, R. Tian, et al., Porous Co-C core—shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance, ACS Appl. Mater. Interfaces, 10(2018), No. 13, p. 11333.

    Article  CAS  Google Scholar 

  132. W. Liu, L. Liu, Z.H. Yang, J.J. Xu, Y.L. Hou, and G.B. Ji, A versatile route toward the electromagnetic functionalization of metal-organic framework-derived three-dimensional nanoporous carbon composites, ACS Appl. Mater. Interfaces., 10(2018), No. 10, p. 8965.

    Article  CAS  Google Scholar 

  133. P. Miao, J. Chen, Y. Tang, K.J. Chen, and J. Kong, Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks, Sci. China Mater., 63(2020), No. 10, p. 2050.

    Article  CAS  Google Scholar 

  134. J. Su, Z.G. Nie, Y. Feng, et al., Hollow core—shell structure Co/C@MoSe2 composites for high-performance microwave absorption, Composites Part A, 162(2020), art. No. 107140.

  135. Z.Y. Tong, Z.J. Liao, Y.Y. Liu, et al., Hierarchical Fe3O4/Fe@C@MoS2 coee-shell nanofibers for efficient microwave absorption, Carbon, 179(2021), p. 646.

    Article  CAS  Google Scholar 

  136. M.L. Ma, Y. Bi, Z. Jiao, et al., Facile fabrication of metal-organic framework derived Fe/Fe3O4/FeN/N-doped carbon composites coated with PPy for superior microwave absorption, J. Colloid Interface Sci., 608(2022), p. 525.

    Article  CAS  Google Scholar 

  137. J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao, and J. Kong, Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption, Chem. Mater., 33(2021), No. 5, p. 1789.

    Article  CAS  Google Scholar 

  138. J.J. Pan, W. Xia, X. Sun, et al., Improvement of interfacial polarization and impedance matching for two-dimensional leaflike bimetallic (Co,Zn) doped porous carbon nanocomposites with broadband microwave absorption, Appl. Surf. Sci., 512(2020), art. No. 144894.

  139. J. Yan, Y. Huang, Y.H. Yan, L. Ding and P.B. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres, ACS Appl. Mater. Interfaces, 11(2019), No. 43, p. 40781.

    Article  CAS  Google Scholar 

  140. P.B. Liu, Y.Q. Zhang, J. Yan, Y. Huang, L. Xia, and Z.X. Guang, Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 368(2019), p. 285.

    Article  CAS  Google Scholar 

  141. X.Y. Xiao, W.J. Zhu, Z. Tan, et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption, Composites Part B, 152(2018), p. 316.

    Article  CAS  Google Scholar 

  142. J.S. Meng, C.J. Niu, L.H. Xu, et al., General oriented formation of carbon nanotubes from metal-organic frameworks, J. Am. Chem. Soc., 139(2017), No. 24, p. 8212.

    Article  CAS  Google Scholar 

  143. B. Quan, X.H. Liang, H. Yi, et al., Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response, J. Mater. Chem. C, 6(2018), No. 43, p. 11659.

    Article  CAS  Google Scholar 

  144. J. Yan, Y. Huang, Y.H. Yan, X.X. Zhao, and P.B. Liu, The composition design of MOF-derived Co-Fe bimetallic autocatalysis carbon nanotubes with controllable electromagnetic properties, Composites Part A, 139(2020), p. 106107.

    Article  CAS  Google Scholar 

  145. H.L. Yang, Z.J. Shen, H.L. Peng, Z.Q. Xiong, C.B. Liu, and Y. Xie, 1D-3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response, Chem. Eng. J., 417(2021), art. No. 128087.

  146. L. Pukdeejorhor, K. Adpakpang, P. Ponchai, et al., Polymorphism of mixed metal Cr/Fe terephthalate metal-organic frameworks utilizing a microwave synthetic method, Cryst. Growth Des., 19(2019), No. 10, p. 5581.

    Article  CAS  Google Scholar 

  147. H. Li, Z.M. Cao, J.Y. Lin, et al., Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance, Nanoscale, 10(2018), No. 4, p. 1930.

    Article  CAS  Google Scholar 

  148. H. Zhao, Z.H. Zhu, C. Xiong, X.L. Zheng, and Q.Y. Lin, The influence of different Ni contents on the radar absorbing properties of FeNi nano powders, RSC Adv., 6(2016), No. 20, p. 16413.

    Article  CAS  Google Scholar 

  149. J.L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/S, Physica, 14(1948), No. 4, p. 207.

    Article  CAS  Google Scholar 

  150. D. Kim, M. Ohnishi, N. Matsushita, and M. Abe, Magnetic cores usable in gigahertz range: Permalloy/Ni-Zn ferrite microcomposite made by low-temperature wet process, IEEE Trans. Magn., 39(2003), No. 5, p. 3181.

    Article  CAS  Google Scholar 

  151. X. Liu, L. Wang, G.Y. Zhang, et al., Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn-air battery, Chem. Eng. J., 414(2021), art. No. 127569.

  152. H.L. Xu, X.W. Yin, M. Zhu, et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption, Carbon, 142(2019), p. 346.

    Article  CAS  Google Scholar 

  153. L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. 2100970.

  154. J. Xiong, Z. Xiang, J. Zhao, et al., Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance, Carbon, 154(2019), p. 391.

    Article  CAS  Google Scholar 

  155. T. Bai, D. Wang, J. Yan, et al., Wetting mechanism and inter-facial bonding performance of bamboo fiber reinforced epoxy resin composites, Compos. Sci. Technol., 213(2021), art. No. 108951.

  156. L. Wang, B. Wen, X. Bai, C. Liu, and H. Yang, NiCo alloy/carbon nanorods decorated with carbon nanotubes for microwave absorption, ACS Appl. Nano Mater., 2(2019), No. 12, p. 7827.

    Article  CAS  Google Scholar 

  157. L.T. Yan, L. Cao, P.C. Dai, et al., Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting, Adv. Funct. Mater., 27(2017), No. 40, art. No. 1703455.

  158. J. Ouyang, Z. He, Y. Zhang, H. Yang, and Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 39304.

    Article  CAS  Google Scholar 

  159. C.H. Zhou, C. Wu, D. Liu, and M. Yan, Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber, Chem. A Eur. J., 25(2019), No. 9, p. 2234.

    Article  CAS  Google Scholar 

  160. D. Li and Y. Xia, Electrospinning of nanofibers: Reinventing the wheel, Adv. Mater., 16(2004), No. 14, p. 1151.

    Article  CAS  Google Scholar 

  161. A. Madni, R. Kousar, N. Naeem, and F. Wahid, Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering, J. Bioresour. Bioprod., 6(2021), No. 1, p. 11.

    Article  CAS  Google Scholar 

  162. N. Bhardwaj and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv., 28(2010), No. 3, p. 325.

    Article  CAS  Google Scholar 

  163. C. Liu, J. Wang, J.S. Li, et al., Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction, J. Mater. Chem. A, 5(2017), No. 3, p. 1211.

    Article  CAS  Google Scholar 

  164. M. Bechelany, M. Drobek, C. Vallicari, A. Abou Chaaya, A. Julbe, and P. Miele, Highly crystalline MOF-based materials grown on electrospun nanofibers, Nanoscale, 7(2015), No. 13, p. 5794.

    Article  CAS  Google Scholar 

  165. W.H. Gu, J. Lv, B. Quan, X.H. Liang, B.S. Zhang, and G.B. Ji, Achieving MOF-derived one-dimensional porous ZnO/C nanofiber with lightweight and enhanced microwave response by an electrospinning method, J. Alloys Compd., 806(2019), p. 983.

    Article  CAS  Google Scholar 

  166. Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624.

  167. H. Chen, R. Hong, Q.C. Liu, et al., CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material, J. Alloys Compd., 752(2018), p. 115.

    Article  CAS  Google Scholar 

  168. X.C. Zheng, Y.Y. Li, and X. Fun, Design of efficient microwave absorbers based on cobalt-based MOF/SrFe10CoTiO19/carbon nanofibers nanocomposite, J Supercond. Nov. Magn., 33(2020), No. 9, p. 2745.

    Article  CAS  Google Scholar 

  169. J.X. Wang, J.F. Yang, J. Yang, and H. Zhang, Design of a novel carbon nanotube and metal-organic framework interpenetrated structure with enhanced microwave absorption properties, Nanotechnology, 31(2020), No. 39, art. No. 394002.

  170. W.B. Zhang, X.L. Xu, J.H. Yang, et al., High thermal conductivity of poly(vinylidene fluoride)/carbon nanotubes nanocomposites achieved by adding polyvinylpyrrolidone, Compos. Sci. Technol., 106(2015), p. 1.

    Article  CAS  Google Scholar 

  171. S. Chakraborty, C.K. Tiwari, Y. Wang, G. Gan-Or, E. Gadot, and I.A. Weinstock, Ligand-regulated uptake of dipolar-aromatic guests by hydrophobically assembled suprasphere hosts, J. Am. Chem. Soc., 141(2019), No. 36, p. 14078.

    Article  CAS  Google Scholar 

  172. V. Jabbari, J.M. Veleta, M. Zarei-Chaleshtori, J. Gardea-Torresdey, and D. Villagrán, Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants, Chem. Eng. J., 304(2016), p. 774.

    Article  CAS  Google Scholar 

  173. Y.C. Yin, X.F. Liu, X.J. Wei, et al., Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber, ACS Appl. Mater. Interfaces, 9(2017), No. 36, p. 30850.

    Article  CAS  Google Scholar 

  174. M. Chen, W. Li, T.E. da Silveira Venzel, et al., Effect of constructive rehybridization on transverse conductivity of aligned single-walled carbon nanotube films, Mater. Today, 21(2018), No. 9, p. 937.

    Article  CAS  Google Scholar 

  175. K. Li, S.Q. Jin, G.D. Zeng, et al., Biomimetic development of a strong, mildew-resistant soy protein adhesive via mineral-organic system and phenol-amine synergy, Ind. Crops Prod., 187(2022), art. No. 115412.

  176. J. Yan, T. Bai, Y.Y. Yue, et al., Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/nanocellulose, Compos. Sci. Technol, 224(2022), art. No. 109490.

  177. Y. Wang, W.Z. Zhang, X.M. Wu, C.Y. Luo, T. Liang, and G. Yan, Metal-organic framework nanoparticles decorated with graphene: A high-performance electromagnetic wave absorber, J. Magn. Magn. Mater., 416(2016), p. 226.

    Article  CAS  Google Scholar 

  178. K. Zhang, A.M. Xie, M.X. Sun, W.C. Jiang, F. Wu, and W. Dong, Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids, Mater. Chem. Phys., 199(2017), p. 340.

    Article  CAS  Google Scholar 

  179. S. Mao, H.H. Pu, and J.H. Chen, Graphene oxide and its reduction: Modeling and experimental progress, RSC Adv., 2(2012), No. 7, p. 2643.

    Article  CAS  Google Scholar 

  180. B. Kuang, W.L. Song, M.Q. Ning, et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide, Carbon, 127(2018), p. 209.

    Article  CAS  Google Scholar 

  181. H.F. Qiu, X.Y. Zhu, P. Chen, et al., Magnetic dodecahedral CoC-decorated reduced graphene oxide as excellent electromagnetic wave absorber, J. Electron. Mater., 49(2020), No. 2, p. 1204.

    Article  CAS  Google Scholar 

  182. Q.Q. Li, Y.H. Zhao, X.H. Li, et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance, Small, 16(2020), No. 42, art. No. 2003905.

  183. Y.Q Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096.

  184. X. Xu, S. Shi, Y. Tang, et al., Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application, Adv. Sci., 8(2021), No. 5, art. No. 2002658.

  185. R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426.

    Article  CAS  Google Scholar 

  186. B.Y. Zhu, P. Miao, J. Kong, X.L. Zhang, G.Y. Wang, and K.J. Chen, Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption, Cryst. Growth Des., 19(2019), No. 3, p. 1518.

    Article  CAS  Google Scholar 

  187. L.N. Huang, C.G. Chen, X.Y. Huang, S.C. Ruan, and Y.J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites, Composites Part B, 164(2019), p. 583.

    Article  CAS  Google Scholar 

  188. R.T. Lv, A.Y. Cao, F.Y. Kang, et al., Single-crystalline permalloy nanowires in carbon nanotubes: Enhanced encapsulation and magnetization, J. Phys. Chem. C, 111(2007), No. 30, p. 11475.

    Article  CAS  Google Scholar 

  189. C.Q. Ge, L.Y. Wang, G. Liu, et al., Electromagnetic and microwave absorption properties of iron pentacarbonyl pyrolysis-synthesized carbonyl iron fibers, RSC Adv., 10(2020), No. 40, p. 23702.

    Article  CAS  Google Scholar 

  190. B. Quan, X.H. Liang, G.B. Ji, et al., Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces, ACS Appl. Mater. Interfaces, 9(2017), No. 11, p. 9964.

    Article  CAS  Google Scholar 

  191. J.J. Ding, L. Wang, Y.H. Zhao, et al., Rutile TiO2 nanoparticles encapsulated in a zeolitic imidazolate framework-derived hierarchical carbon framework with engineered dielectricity as an excellent microwave absorber, ACS Appl. Mater. Interfaces, 12(2020), No. 42, p. 48140.

    Article  CAS  Google Scholar 

  192. Q. Tang, Z. Zhou, and P.W. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer J. Am. Chem. Soc., 134(2012), No. 40, p. 16909.

    Article  CAS  Google Scholar 

  193. L.S. Wei, W. Deng, S.S. Li, Z.G. Wu, J.H. Cai and J.W. Luo, Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors, J. Bioresour. Bioprod., 7(2022), No. 1, p. 63.

    Article  CAS  Google Scholar 

  194. Z.W. Seh, K.D. Fredrickson, B. Anasori, et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution, ACS Energy Lett., 1(2016), No. 3, p. 589.

    Article  CAS  Google Scholar 

  195. J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, and S.Z. Qiao, Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun., 8(2017), art. No. 13907.

  196. F. Shahzad, S.A. Zaidi, and R.A. Naqvi, 2D transition metal carbides (MXene) for electrochemical sensing: A review, Crit. Rev. Anal. Chem., 52(2022), No. 4, p. 848.

    Article  CAS  Google Scholar 

  197. Y.C. Cai, J. Shen, G. Ge, et al., Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range, ACS Nano, 12(2018), No. 1, p. 56.

    Article  CAS  Google Scholar 

  198. M.K. Han, X.W. Yin, X.L. Li, et al., Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes, ACS Appl. Mater. Interfaces, 9(2017), No. 23, p. 20038.

    Article  CAS  Google Scholar 

  199. J. Liu, H.B. Zhang, R. Sun, et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding, Adv. Mater., 29(2017), No. 38, art. No. 1702367.

  200. P. He, X.X. Wang, Y.Z. Cai, et al., Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding, Nanoscale, 11(2019), No. 13, p. 6080.

    Article  CAS  Google Scholar 

  201. G.Z. Cui, X. Zheng, X.L. Lv, Q. Jia, W. Xie, and G.X. Gu, Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature, Ceram. Int., 45(2019), No. 17, p. 23600.

    Article  CAS  Google Scholar 

  202. H.Y. Wang, X.B. Sun, and G.S. Wang, A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties, J. Mater. Chem. A, 9(2021), No. 43, p. 24571.

    Article  CAS  Google Scholar 

  203. B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, and W. Lu, Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 55.

  204. J. Liu, H.B. Zhang, X. Xie, et al., Multifunctional, superelastic, and lightweight MXene/polyimide aerogels, Small, 14(2018), No. 45, art. No. 1802479.

  205. Y.M. Wang, X. Wang, X.L. Li, et al., Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance, Adv. Funct. Mater., 29(2019), No. 14, art. No. 1900326.

  206. F. Wu, Z.H. Liu, J.Q. Wang, et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties, Chem. Eng. J., 422(2021), art. No. 130591.

  207. Y. Gu, Y.N. Wu, L. Li, W. Chen, F. Li, and S. Kitagawa, Controllable modular growth of hierarchical MOF-on-MOF architectures, Angew. Chem. Int. Ed., 56(2017), No. 49, p. 15658.

    Article  CAS  Google Scholar 

  208. J. Yang, F.J. Zhang, H.Y. Lu, et al., Hollow Zn/Co ZIF particles derived from core—shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene, Angew. Chem. Int. Ed., 127(2015), No. 37, p. 11039.

    Article  Google Scholar 

  209. C. Liu, J. Wang, J.J. Wan, and C.Z. Yu, MOF-on-MOF hybrids: Synthesis and applications, Coord. Chem. Rev., 432(2021), art. No. 213743.

  210. M.T. Zhao, K. Yuan, Y. Wang, et al., Metal-organic frameworks as selectivity regulators for hydrogenation reactions, Nature, 539(2016), No. 7627, p. 76.

    Article  CAS  Google Scholar 

  211. B.Y. Guan, L. Yu, and X.W. (David) Lou, A dual-metal-organic-framework derived electrocatalyst for oxygen reduction, Energy Environ. Sci., 9(2016), No. 10, p. 3092.

    Article  CAS  Google Scholar 

  212. S.L. Zhang, B.Y. Guan, H.B. Wu, and X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties, Nano-Micro Lett., 10(2018), No. 3, art. No. 44.

  213. L.L. Chai, J.Q. Pan, Y. Hu, J.J. Qian and M.C. Hong, Rational design and growth of MOF-on-MOF heterostructures, Small, 17(2021), No. 36, art. No. 2100607.

  214. X.H. Liang, B. Quan, G.B. Ji, et al., Novel nanoporous carbon derived from metal-organic frameworks with tunable electromagnetic wave absorption capabilities, Inorg. Chem. Front., 3(2016), No. 12, p. 1516.

    Article  CAS  Google Scholar 

  215. P.B. Liu, S. Gao, Y. Wang, et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials, Chem. Eng. J., 381(2020), art. No. 122653.

  216. F. Wu, Q. Li, Z.H. Liu, et al., Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties, Carbon, 182(2021), p. 484.

    Article  CAS  Google Scholar 

  217. W. Feng, Y.M. Wang, Y.C. Zou, J.C. Chen, D.C. Jia, and Y. Zhou, ZnO@ N-doped porous carbon/Co3ZnC core—shell heterostructures with enhanced electromagnetic wave attenuation ability, Chem. Eng. J., 342(2018), p. 364.

    Article  CAS  Google Scholar 

  218. K. Ikigaki, K. Okada, Y. Tokudome, et al., MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks, Angew. Chem. Int. Ed., 58(2019), No. 21, p. 6886.

    Article  CAS  Google Scholar 

  219. G. Lee, S. Lee, S. Oh, D. Kim, and M. Oh, Tip-to-middle anisotropic MOF-on-MOF growth with a structural adjustment, J. Am. Chem. Soc., 142(2020), No. 6, p. 3042.

    Article  CAS  Google Scholar 

  220. J. Yan, Y. Huang, X.P. Han, X.G. Gao, and P.B. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption, Composites Part B, 163(2019), p. 67.

    Article  CAS  Google Scholar 

  221. J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509.

    Article  CAS  Google Scholar 

  222. X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17870.

    Article  CAS  Google Scholar 

  223. Z. Xiang, J. Xiong, B.W. Deng, et al., Rational design of 2D hierarchically laminated Fe3O4@nanoporous carbon@rGO nanocomposites with strong magnetic coupling for excellent electromagnetic absorption applications, J. Mater. Chem. C, 8(2020), No. 6, p. 2123.

    Article  CAS  Google Scholar 

  224. X. Zhang, J. Qiao, J.B. Zhao, et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UIO-66-derived porous ZrO2/C, ACS Appl. Mater. Interfaces, 11(2019), No. 39, p. 35959.

    Article  CAS  Google Scholar 

  225. Y. Zhang, Z.H. Yang, M. Li, et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption, Chem. Eng. J., 382(2020), art. No. 123039.

  226. F.Y. Wang, N. Wang, X.J. Han, et al., Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption, Carbon, 145(2019), p. 701.

    Article  CAS  Google Scholar 

  227. P. Miao, K.Y. Cheng, H.Q. Li, et al., Poly(dimethyl-silylene)diacetylene-guided ZIF-based heterostructures for full Ku-band electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 19, p. 17706.

    Article  CAS  Google Scholar 

  228. X.P. Han, Y. Huang, L. Ding, Y. Song, T.H. Li, and P.B. Liu, Ti3C2Tx MXene nanosheet/metal-organic framework composites for microwave absorption, ACS Appl. Nano Mater., 4(2021), No. 1, p. 691.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20221336), the Jiangsu Agricultural Science and Technology Independent Innovation Fund (No. CX(20)3041), the National Natural Science Foundation of China (No. 31971740), the Research Project of the Jiangxi Forestry Bureau (No. 202134), and the Nanping Science and Technology Planning Project (No. 2020Z001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhichao Lou or Yanjun Li.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, J., Li, Y. et al. A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. Int J Miner Metall Mater 30, 446–473 (2023). https://doi.org/10.1007/s12613-022-2562-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2562-9

Keywords

Navigation