Skip to main content
Log in

Magnetic Dodecahedral CoC-Decorated Reduced Graphene Oxide as Excellent Electromagnetic Wave Absorber

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A two-step method has been adopted to synthesize cobalt nanoclusters in carbon (CoC)-decorated reduced graphene oxide (rGO) from graphene oxide (GO) and ZIF-67 as an excellent stable electromagnetic wave (EMW) absorber. Firstly, the electrostatic force between GO and Co2+ gave rise to in situ growth of ZIF-67 on GO (ZIF-67–GO). Then CoC–rGO was obtained by calcination of ZIF-67–GO hybrids. The ligand is introduced as the nitrogen source to GO. The crystal structure, chemical composition, and magnetic properties of CoC–rGO were investigated by x-ray powder diffraction analysis, Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and vibrating-sample magnetometry. The morphology was observed by scanning electron microscopy and transmission electron microscopy. By adjusting the ratio of GO to ZIF-67, the electromagnetic parameters of CoC–rGO can be optimized. It was found that the sample consisting of 10 wt.% CoC–rGO-2 in a paraffin matrix exhibited excellent EMW absorption performance, reaching a minimum reflection loss (RLmin) of −44.77 dB with thickness of 2.1 mm and an effective bandwidth (RL ≤ −10 dB) of up to 5.2 GHz at thickness of 1.8 mm. The results of this study open an effective and simple avenue for the design of EMW absorbers using metal–organic framework (MOF) and low-cost carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I S Group, Int. J. Epidemiol. 39, 675 (2010).

    Google Scholar 

  2. I.-L. Hansteen, L. Lageide, K.O. Clausen, V. Haugan, M. Svendsen, J.G. Eriksen, R. Skiaker, E. Hauger, A.I. Vistnes, and E.H. Kure, Anticancer Res. 29, 2885 (2009).

    Google Scholar 

  3. C. Luo, W. Duan, X. Yin, and J. Kong, J. Phys. Chem. C 120, 18721 (2016).

    CAS  Google Scholar 

  4. L. Peng, J. Zhang, Z. Xue, B. Han, J. Li, and G. Yang, Chem. Commun. (Cambridge) 49, 11695 (2013).

    CAS  Google Scholar 

  5. J. Li, L. Qi, and H. Li, J. Phys. Chem. C 120, 22865 (2016).

    CAS  Google Scholar 

  6. M. Zhang, X.-X. Wang, W.-Q. Cao, J. Yuan, and M.-S. Cao, Adv. Opt. Mater. 7, 1900689 (2019).

    CAS  Google Scholar 

  7. H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, and A.J. Epstein, Appl. Phys. Lett. 84, 589 (2004).

    CAS  Google Scholar 

  8. M. Lu, W. Cao, H. Shi, X. Fang, J. Yang, Z. Hou, H. Jin, W. Wang, J. Yuan, and M. Cao, J. Mater. Chem. A 2, 10540 (2014).

    CAS  Google Scholar 

  9. Y. Li, F. Qin, L. Quan, H. Wei, Y. Luo, H. Wang, and H.-X. Peng, Carbon 153, 447 (2019).

    CAS  Google Scholar 

  10. H. Qin, Q. Liao, G. Zhang, Y. Huang, and Y. Zhang, Appl. Surf. Sci. 286, 7 (2013).

    CAS  Google Scholar 

  11. L. Liu, Y. Duan, L. Ma, S. Liu, and Z. Yu, Appl. Surf. Sci. 257, 842 (2010).

    CAS  Google Scholar 

  12. D. Min, W. Zhou, Y. Qing, F. Luo, and D. Zhu, J. Electron. Mater. 46, 4903 (2017).

    CAS  Google Scholar 

  13. J. Zenga, H. Fan, Y. Wang, S. Zhang, J. Xue, and C. Zhang, J. Alloys Compd. 524, 59 (2012).

    Google Scholar 

  14. X. Wang, X. Huang, Z. Chen, X. Liao, C. Liu, and B. Shi, J. Mater. Chem. C 3, 10146 (2015).

    CAS  Google Scholar 

  15. J. Yan, Y. Huang, C. Wei, N. Zhang, and P. Liu, Compos. A 99, 121 (2017).

    CAS  Google Scholar 

  16. X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, J. Mater. Chem. C 1, 765 (2013).

    CAS  Google Scholar 

  17. M. Zhang, J. Zhang, X. Lv, L. Zhang, Y. Wei, S. Liu, Y. Shi, and C. Gong, J. Mater. Sci.: Mater. Electron. 29, 5496 (2018).

    CAS  Google Scholar 

  18. O. Balci, E.O. Polat, N. Kakenov, and C. Kocabas, Nat. Commun. 6, 6628 (2015).

    CAS  Google Scholar 

  19. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, W. Wang, and J. Yuan, Adv. Mater. 26, 3484 (2014).

    CAS  Google Scholar 

  20. C.N. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).

    CAS  Google Scholar 

  21. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    CAS  Google Scholar 

  22. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).

    CAS  Google Scholar 

  23. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).

    CAS  Google Scholar 

  24. L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, and L. Zhang, J. Phys. Chem. C 117, 19701 (2013).

    CAS  Google Scholar 

  25. J. Feng, Y. Hou, Y. Wang, and L. Li, ACS Appl. Mater. Interfaces 9, 14103 (2017).

    CAS  Google Scholar 

  26. H. Yuan, F. Yan, C. Li, C. Zhu, X. Zhang, and Y. Chen, ACS Appl. Mater. Interfaces 10, 1399 (2018).

    CAS  Google Scholar 

  27. H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu, J. Am. Chem. Soc. 133, 11854 (2011).

    CAS  Google Scholar 

  28. S.J. Yang, T. Kim, J.H. Im, Y.S. Kim, K. Lee, H. Jung, and C.R. Park, Chem. Mater. 24, 464 (2012).

    CAS  Google Scholar 

  29. B. Li, H.M. Wen, Y. Cui, W. Zhou, G. Qian, and B. Chen, Adv. Mater. 28, 8819 (2016).

    CAS  Google Scholar 

  30. T. Wang, Q. Zhou, X. Wang, J. Zheng, and X. Li, J. Mater. Chem. A 3, 16435 (2015).

    CAS  Google Scholar 

  31. S. Zhong, C. Zhan, and D. Cao, Carbon 85, 51 (2015).

    CAS  Google Scholar 

  32. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, and O.M. Yaghi, Proc. Natl. Acad. Sci. USA 103, 10186 (2006).

    CAS  Google Scholar 

  33. B. Quan, X. Liang, G. Ji, J. Ma, P. Ouyang, H. Gong, G. Xu, and Y. Du, ACS Appl. Mater. Interfaces 9, 9964 (2017).

    CAS  Google Scholar 

  34. Y. Lü, Y. Wang, H. Li, Y. Lin, Z. Jiang, Z. Xie, Q. Kuang, and L. Zheng, ACS Appl. Mater. Interfaces 7, 13604 (2015)

    Google Scholar 

  35. Y. Yin, X. Liu, X. Wei, R. Yu, and J. Shui, ACS Appl. Mater. Interfaces 8, 34686 (2016).

    CAS  Google Scholar 

  36. D. Xu, X. Xiong, P. Chen, Q. Yu, H. Chu, S. Yang, and Q. Wang, J. Magn. Magn. Mater. 469, 428 (2019).

    CAS  Google Scholar 

  37. Q. Zeng, P. Chen, Q. Yu, H.R. Chu, X.H. Xiong, D.W. Xu, and Q. Wang, Sci. Rep. 7, 8388 (2017).

    Google Scholar 

  38. S. Yang, D. Xu, P. Chen, H. Qiu, and X. Guo, J. Mater. Sci.: Mater. Electron. 29, 19443 (2018).

    CAS  Google Scholar 

  39. L. Liu, L. Wang, Q. Li, X. Yu, X. Shi, J. Ding, W. You, L. Yang, Y. Zhang, and R. Che, ChemNanoMat 5, 558 (2019).

    CAS  Google Scholar 

  40. J. Yuan, Q. Liu, S. Li, Y. Lu, S. Jin, K. Li, H. Chen, and H. Zhang, Synth. Met. 228, 32 (2017).

    CAS  Google Scholar 

  41. J. William, S. Hummers, and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Google Scholar 

  42. Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, and D. Chen, Nanoscale 5, 11770 (2013).

    CAS  Google Scholar 

  43. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour, ACS Nano 4, 4806 (2010).

    CAS  Google Scholar 

  44. Q. Yang, S. Ren, Q. Zhao, R. Lu, C. Hang, Z. Chen, and H. Zheng, Chem. Eng. J. 333, 49 (2018).

    CAS  Google Scholar 

  45. J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, and Z. Jiang, Nanoscale 8, 8899 (2016).

    CAS  Google Scholar 

  46. T. Liu, X. Xie, Y. Pang, and S. Kobayashi, J. Mater. Chem. C 4, 1727 (2016).

    CAS  Google Scholar 

  47. Z. Wang, X. Xiong, L. Qie, and Y. Huang, Electrochim. Acta 106, 320 (2013).

    CAS  Google Scholar 

  48. Z. Zhu, X. Sun, G. Li, H. Xue, H. Guo, X. Fan, X. Pan, and J. He, J. Magn. Magn. Mater. 377, 95 (2015).

    CAS  Google Scholar 

  49. S.K. Park and Y.C. Kang, ACS Appl. Mater. Interfaces 10, 17203 (2018).

    CAS  Google Scholar 

  50. M. Kang, Appl. Catal. A 251, 143 (2003).

    CAS  Google Scholar 

  51. X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, and G. Wang, Adv. Funct. Mater. 28, 1800761 (2018).

    Google Scholar 

  52. B. Zhao, X. Zhang, J. Deng, Z. Bai, L. Liang, Y. Li, and R. Zhang, Phys. Chem. Chem. Phys. 20, 28623 (2018).

    CAS  Google Scholar 

  53. X.F. Zhang, P.F. Guan, and X.L. Dong, Appl. Phys. Lett. 97, 033107 (2010).

    Google Scholar 

  54. Y. Wei, H. Liu, S. Liu, M. Zhang, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Chem. Commun. 9, 70 (2018).

    Google Scholar 

  55. Y. Shi, M. Zhang, X. Zhang, L. Zhang, Y. Zhang, Z. Jiang, H. Si, and C. Gong, J. Appl. Phys. 126, 105109 (2019).

    Google Scholar 

  56. M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L. Zhang, and C. Gong, J. Phys. D Appl. Phys. 53, 02LT01 (2019).

    Google Scholar 

  57. B. Zhao, B. Fan, G. Shao, W. Zhao, and R. Zhang, ACS Appl. Mater. Interfaces 7, 18815 (2015).

    CAS  Google Scholar 

  58. X. Zhang, J. Guo, P. Guan, G. Qin, and S.J. Pennycook, Phys. Rev. Lett. 115, 147601 (2015).

    Google Scholar 

  59. Y. Wei, L. Zhang, C. Gong, S. Liu, M. Zhang, Y. Shi, and J. Zhang, J. Alloys Compd. 735, 1488 (2018).

    CAS  Google Scholar 

  60. L. Huang, Y. Duan, X. Dai, Y. Zeng, G. Ma, Y. Liu, S. Gao, and W. Zhang, Small 15, 1902730 (2019).

    Google Scholar 

  61. Y. Wei, Y. Shi, Z. Jiang, X. Zhang, H. Chen, Y. Zhang, J. Zhang, and C. Gong, J. Alloys Compd. 810, 151950 (2019).

    CAS  Google Scholar 

  62. Y. Wei, Y. Shi, X. Zhang, Z. Jiang, Y. Zhang, L. Zhang, J. Zhang, and C. Gong, J. Mater. Sci.: Mater. Electron. 30, 14519 (2019).

    CAS  Google Scholar 

  63. X.-Y. Fang, X.-X. Yu, H.-M. Zheng, H.-B. Jin, L. Wang, and M.-S. Cao, Phys. Lett. A 379, 2245 (2015).

    CAS  Google Scholar 

  64. Y. Qi, L. Qi, L. Liu, B. Dai, D. Wei, G.-M. Shi, and Y. Qi, Carbon 150, 259 (2019).

    CAS  Google Scholar 

  65. S. Liu, M. Zhang, X. Lv, Y. Wei, Y. Shi, J. Zhang, L. Zhang, and C. Gong, Appl. Phys. Lett. 113, 083905 (2018).

    Google Scholar 

  66. X.-X. Wang, J.-C. Shu, W.-Q. Cao, M. Zhang, J. Yuan, and M.-S. Cao, Chem. Eng. J. 369, 1068 (2019).

    CAS  Google Scholar 

  67. W. Xu, G. Wang, and P. Yin, Carbon 139, 759 (2018).

    CAS  Google Scholar 

  68. X.-X. Wang, T. Ma, J.-C. Shu, and M.-S. Cao, Chem. Eng. J. 332, 321 (2018).

    CAS  Google Scholar 

  69. M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, and J. Yuan, Small 14, 1800987 (2018).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Defense key program Fundamental Research Program (No. A35201XXXXX), National Natural Science Foundation of China (No. 51303106), Fundamental Research Funds for the Central Universities (DUT18GF107), Xingliao Elite Program Project (Special Professor of Liaoning Province-2018), Aviation Science Foundation (No. 20173754009), and LiaoNing Revitalization Talents Program (Nos. 1802085 and 1807003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Zhu, X., Chen, P. et al. Magnetic Dodecahedral CoC-Decorated Reduced Graphene Oxide as Excellent Electromagnetic Wave Absorber. J. Electron. Mater. 49, 1204–1214 (2020). https://doi.org/10.1007/s11664-019-07837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07837-9

Keywords

Navigation