Skip to main content

Advertisement

Log in

Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Novel graphene-supported FeOOH nanodots (FeOOH NDs@G) were successfully prepared by a facile hydrothermal method and doped into MgH2 through mechanical ball-milling. MgH2 with 10wt% FeOOH NDs@G began to release hydrogen at 229.8°C, which is 106.8°C lower than that of pure MgH2. The MgH2-10wt% FeOOH NDs@G composite could reversibly absorb 6.0wt% hydrogen at 200°C under a 3.2 MPa hydrogen pressure within 60 min. With the addition of FeOOH NDs@G, the dehydrogenation and hydrogenation activation energy of MgH2 was decreased to 125.03 and 58.20 kJ·mol−1 (156.05 and 82.80 kJ·mol−1 for pure MgH2), respectively. Furthermore, the hydrogen capacity of the FeOOH NDs@G composite retained 98.5% of the initial capacity after 20 cycles, showing good cyclic stability. The catalytic action of FeOOH NDs@G towards MgH2 could be attributed to the synergistic effect between graphene nanosheets and in-situ formed Fe, which prevented the aggregation of Mg/MgH2 particles and accelerated the hydrogen diffusion during cycling, thus enabling the MgH2-10wt% FeOOH NDs@G composite to exhibit excellent hydrogen storage performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Maugeri, Oil: never cry wolf-Why the petroleum age is far from over, Science, 304(2004), No. 5674, p. 1114.

    Article  CAS  Google Scholar 

  2. C. Wan, L. Zhou, and S.M. Xu, et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid, Chem. Eng. J., 429(2022), art. No. 132388.

  3. Y.H. Zhang, W. Zhang, and X.P. Song, et al., Effects of spinning rate on structures and electrochemical hydrogen storage performances of RE-Mg-Ni-Mn-based AB2-type alloys, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3219.

    Article  CAS  Google Scholar 

  4. L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, 414(2001), No. 6861, p. 353.

    Article  CAS  Google Scholar 

  5. Q.W. Lai, M. Paskevicius, and D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789.

    Article  CAS  Google Scholar 

  6. S.K. Jeon, O.H. Kwon, H.S. Jang, K.S. Ryu, and S.H. Nahm, Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber, Appl. Surf. Sci., 432(2018), p. 176.

    Article  CAS  Google Scholar 

  7. A. Hammad and I. Dincer, Analysis and assessment of an advanced hydrogen liquefaction system, Int. J. Hydrogen Energy, 43(2018), No. 2, p. 1139.

    Article  CAS  Google Scholar 

  8. Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86.

    Article  Google Scholar 

  9. J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072.

    Article  CAS  Google Scholar 

  10. Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, Int. J. Hydrogen Energy, 44(2019), No. 33, p. 18179.

    Article  CAS  Google Scholar 

  11. G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567.

    Article  Google Scholar 

  12. Y. Wang and Y.J. Wang, Recent advances in additive-enhanced magnesium hydride for hydrogen storage, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 41.

    Article  CAS  Google Scholar 

  13. F.Y. Cheng, Z.L. Tao, J. Liang, and J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures, Chem. Commun., 48(2012), No. 59, art. No. 7334.

  14. L.X. Hu and E.D. Wang, Hydrogen generation via hydrolysis of nanocrystalline MgH2 and MgH2-based composites, Trans. Nonferrous Met. Soc. China, 15(2005), No. 5, p. 965.

    CAS  Google Scholar 

  15. L.S. Xie, J.S. Li, T.B. Zhang, and H.C. Kou, Role of milling time and Ni content on dehydrogenation behavior of MgH2/Ni composite, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 569.

    Article  CAS  Google Scholar 

  16. Y.H. Sun, T.Y. Ma, and K.F. Aguey-Zinsou, Magnesium supported on nickel nanobelts for hydrogen storage: Coupling nanosizing and catalysis, ACS Appl. Nano Mater., 1(2018), No. 3, p. 1272.

    Article  CAS  Google Scholar 

  17. Q.Y. Zhang, Y.K. Huang, and L. Xu, et al., Highly dispersed MgH2 nanoparticle–graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828.

    Article  CAS  Google Scholar 

  18. C.Q. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178.

    Article  Google Scholar 

  19. Y.H. Zhang, D.L. Zhao, and B.W. Li, et al., Hydrogen storage behaviours of nanocrystalline and amorphous Mg20Ni10−xCox (x=0−4) alloys prepared by melt spinning, Trans. Nonferrous Met. Soc. China, 20(2010), No. 3, p. 405.

    Article  CAS  Google Scholar 

  20. J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183.

    Article  CAS  Google Scholar 

  21. Y.H. Zhang, T. Yang, and W.G. Bu, et al., Effect of Nd content on electrochemical performances of nanocrystalline and amorphous (Mg24Ni10Cu2)100−xNdx (x=0−20) alloys prepared by melt spinning, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3668.

    Article  CAS  Google Scholar 

  22. Y.H. Zhang, L.W. Li, and D.C. Feng, et al., Hydrogen storage behavior of nanocrystalline and amorphous La-Mg-Ni-based LaMg12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551.

    Article  CAS  Google Scholar 

  23. V. Knotek and D. Vojtěch, Electrochemical hydriding performance of Mg-TM-Mm (TM=transition metals, Mm=mischmetal) alloys for hydrogen storage, Trans. Nonferrous Met. Soc. China, 23(2013), No. 7, p. 2047.

    Article  CAS  Google Scholar 

  24. X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4-Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423.

    Article  CAS  Google Scholar 

  25. C.C. Xu, X.Z. Xiao, and J. Shao, et al., Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 791.

    Article  CAS  Google Scholar 

  26. F.M. Nyahuma, L.T. Zhang, and M.C. Song, et al., Significantly improved hydrogen storage behaviors of MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 2021, DOI: https://doi.org/10.1007/s12613-021-2303-5

  27. Z. Zhang, J.H. Zhang, and J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  28. F.A.H. Yap, N.N. Sulaiman, and M. Ismail, Understanding the dehydrogenation properties of MgH2 catalysed by Na3AlF6, Int. J. Hydrogen Energy, 44(2019), No. 58, p. 30583.

    Article  CAS  Google Scholar 

  29. Q.Y. Zhang, Y.K. Huang, and T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953.

  30. Y.H. Jia, S.M. Han, and W. Zhang, et al., Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2, Int. J. Hydrogen Energy, 38(2013), No. 5, p. 2352.

    Article  CAS  Google Scholar 

  31. G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg-B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252.

    Article  CAS  Google Scholar 

  32. U. Ulmer, D. Oertel, and T. Diemant, et al., Performance improvement of V-Fe-Cr-Ti solid state hydrogen storage materials in impure hydrogen gas, ACS Appl. Mater. Interfaces, 10(2018), No. 2, p. 1662.

    Article  CAS  Google Scholar 

  33. X. Zhang, Z.H. Ren, and Y.H. Lu, et al., Facile synthesis and superior catalytic activity of nano-TiN@N-C for hydrogen storage in NaAlH4, ACS Appl. Mater. Interfaces, 10(2018), No. 18, p. 15767.

    Article  CAS  Google Scholar 

  34. B. Yang, J.X. Zou, and T.P. Huang, et al., Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method, Chem. Eng. J., 371(2019), p. 233.

    Article  CAS  Google Scholar 

  35. X. Zhang, Y.F. Liu, K. Wang, M.X. Gao, and H.G. Pan, Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation, Nano Res., 8(2015), No. 2, p. 533.

    Article  CAS  Google Scholar 

  36. X.Y. Ma, J.Q. Li, and C.H. An, et al., Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production, Nano Res., 9(2016), No. 8, p. 2284.

    Article  CAS  Google Scholar 

  37. S.R. Naqvi, T. Hussain, W. Luo, and R. Ahuja, Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials, Nano Res., 11(2018), No. 7, p. 3802.

    Article  CAS  Google Scholar 

  38. Z.Y. Lu, H.J. Yu, and X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195.

    Article  CAS  Google Scholar 

  39. L. Xie, Y. Liu, and X.Z. Zhang, et al., Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1–2, p. 388.

    Article  CAS  Google Scholar 

  40. W.C. Huang, J. Yuan, and J.G. Zhang, et al., Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions, Rare Met., 36(2017), No. 7, p. 574.

    Article  CAS  Google Scholar 

  41. Y. Wang, Q.Y. Zhang, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2, J. Alloys Compd., 645(2015), p. S509.

    Article  CAS  Google Scholar 

  42. A. Bassetti, E. Bonetti, and L. Pasquini, et al., Hydrogen desorption from ball milled MgH2 catalyzed with Fe, Eur. Phys. J. B, 43(2005), No. 1, p. 19.

    Article  CAS  Google Scholar 

  43. L.T. Zhang, L. Ji, and Z.D. Yao, et al., Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrogen Energy, 44(2019), No. 39, p. 21955.

    Article  CAS  Google Scholar 

  44. G.L. Xia, Y.B. Tan, and X.W. Chen, et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27(2015), No. 39, p. 5981.

    Article  CAS  Google Scholar 

  45. L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146.

    Article  CAS  Google Scholar 

  46. J.Q. Liu, M.B. Zheng, X.Q. Shi, H.B. Zeng, and H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors, Adv. Funct. Mater., 26(2016), No. 6, p. 919.

    Article  CAS  Google Scholar 

  47. R.V. Muraleedharan, On Johnson-Mehl-Avrami equation, J. Therm. Anal., 37(1991), No. 11–12, p. 2729.

    Article  CAS  Google Scholar 

  48. E. Xu, H. Li, X.M. You, C. Bu, L.F. Zhang, Q. Wang, and Z.G. Zhao, Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057.

    Article  CAS  Google Scholar 

  49. G. Liu, Y.J. Wang, and C.C. Xu, et al., Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride, Nanoscale, 5(2013), No. 3, p. 1074.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 51801078) and the Natural Science Foundation of Jiangsu Province (No. BK20180986).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuting Zhang or Shengnan Wang.

Additional information

Conflict of Interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Zhang, L., Zheng, J. et al. Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2. Int J Miner Metall Mater 29, 1464–1473 (2022). https://doi.org/10.1007/s12613-021-2393-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2393-0

Keywords

Navigation