Skip to main content

Advertisement

Log in

Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model (DAEM) to expand the knowledge on the combustion mechanisms. The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves. Overall, the feedstock combustion could be divided into four stages: the decomposition of hemicellulose, cellulose, lignin, and char combustion. The hydrochar combustion could in turn be divided into three stages: the combustion of cellulose, lignin, and char. The mean activation energy ranges obtained for the cellulose, lignin, and char were 273.7–292.8, 315.1–334.5, and 354.4–370 kJ/mol, respectively, with the standard deviations of 2.1–23.1, 9.5–27.4, and 12.1–22.9 kJ/mol, respectively. The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization (HTC) temperature, while the mass fraction of char gradually increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Barzegar, A. Yozgatligil, H. Olgun, and A.T. Atimtay, TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres, J. Energy Inst., 93(2020), No. 3, p. 889.

    Article  CAS  Google Scholar 

  2. X.E. Wang, K.X. Li, J.N. Song, H.Y. Duan, and S. Wang, Integrated assessment of straw utilization for energy production from views of regional energy, environmental and socioeconomic benefits, J. Clean. Prod., 190(2018), p. 787.

    Article  CAS  Google Scholar 

  3. W. Xiong, G.Q. Wang, and S.X. Zhou, Comparison of energy consumption and environmental impact of replacement of coal with straw injection into blast furnace, Environ. Sci. Technol., 36(2013), No. 4, p. 137.

    Google Scholar 

  4. J.B. Chen, Y.H. Wang, X.M. Lang, X.E. Ren, and S.S. Fan, Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics, Bioresour. Technol., 241(2017), p. 340.

    Article  CAS  Google Scholar 

  5. M. Heidari, A. Dutta, B. Acharya, and S. Mahmud, A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion, J. Energy Inst., 92(2019), No. 6, p. 1779.

    Article  CAS  Google Scholar 

  6. N. Zhang, G.W. Wang, J.L. Zhang, X.J. Ning, Y.J. Li, W. Liang, and C. Wang, Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 93(2020), No. 3, p. 1125.

    Article  CAS  Google Scholar 

  7. Z.H. Chen, M. Hu, X.L. Zhu, D.B. Guo, S.M. Liu, Z.Q. Hu, B. Xiao, J.B. Wang, and M. Laghari, Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermo-gravimetric analysis, Bioresour. Technol., 192(2015), p. 441.

    Article  CAS  Google Scholar 

  8. K.Y. Park, K. Lee, and D. Kim, Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization, Bioresour. Technol., 258(2018), p. 119.

    Article  CAS  Google Scholar 

  9. J. Zhao, H.B. Zuo, J.S. Wang, and Q.G. Xue, The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1512.

    Article  CAS  Google Scholar 

  10. G.K. Parshetti, A. Quek, R. Betha, and R. Balasubramanian, TGA-FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal, Fuel Process. Technol., 118(2014), p. 228.

    Article  CAS  Google Scholar 

  11. H. Li, S.Y. Wang, X.Z. Yuan, Y.N. Xi, Z.L. Huang, M.J. Tan, and C.Z. Li, The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization, Bioresour. Technol., 249(2018), p. 574.

    Article  CAS  Google Scholar 

  12. Z.L. Yao, X.Q. Ma, and Y.S. Lin, Effects of hydrothermal treatment temperature and residence time on characteristics and combustion behaviors of green waste, Appl. Therm. Eng., 104(2016), p. 678.

    Article  CAS  Google Scholar 

  13. H.B. Sharma, S. Panigrahi, and B.K. Dubey, Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar, Waste Manage., 91(2019), p. 108.

    Article  CAS  Google Scholar 

  14. D. Chiaramonti, M. Prussi, M. Buffi, A.M. Rizzo, and L. Pari, Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Appl. Energy, 185(2017), p. 963.

    Article  CAS  Google Scholar 

  15. F.Y. Liu, R.D. Yu, X.D. Ji, and M.H. Guo, Hydrothermal carbonization of holocellulose into hydrochar: Structural, chemical characteristics, and combustion behavior, Bioresour. Technol., 263(2018), p. 508.

    Article  CAS  Google Scholar 

  16. G.K. Zhu, L. Yang, Y. Gao, J.Y. Xu, H.J. Chen, Y.Z. Zhu, Y.F. Wang, C.H. Liao, C. Lu, and C. Zhu, Characterization and pelletization of cotton stalk hydrochar from HTC and combustion kinetics of hydrochar pellets by TGA, Fuel, 244(2019), p. 479.

    Article  CAS  Google Scholar 

  17. N. Zhang, G.W. Wang, C.M. Yu, J.L. Zhang, H. Dang, C.L. Zhang, X.J. Ning, and C. Wang, Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization, Energy, 238(2022), art. No. 121682.

  18. M.A. Islam, G. Kabir, M. Asif, and B.H. Hameed, Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis, Bioresour. Technol., 194(2015), p. 14.

    Article  CAS  Google Scholar 

  19. C. He, A. Giannis, and J.Y. Wang, Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior, Appl. Energy, 111(2013), p. 257.

    Article  CAS  Google Scholar 

  20. Q.V. Bach, K.Q. Tran, and Ø. Skreiberg, Combustion kinetics of wet-torrefied forest residues using the distributed activation energy model (DAEM), Appl. Energy, 185(2017), p. 1059.

    Article  CAS  Google Scholar 

  21. J.Z. Zhang, T.J. Chen, J.L. Wu, and J.H. Wu, Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: Comparison of N2 and CO2 atmosphere, Bioresour. Technol., 166(2014), p. 87.

    Article  CAS  Google Scholar 

  22. G.W. Wang, J.L. Zhang, J.Y. Lee, X.M. Mao, L. Ye, W.R. Xu, X.J. Ning, N. Zhang, H.P. Teng, and C. Wang, Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energy, 266(2020), art. No. 114818.

  23. Z.Z. Ma, J.H. Xie, N.B. Gao, and C. Quan, Pyrolysis behaviors of oilfield sludge based on Py-GC/MS and DAEM kinetics analysis, J. Energy Inst., 92(2019), No. 4, p. 1053.

    Article  CAS  Google Scholar 

  24. J.M. Cai, W.X. Wu, and R.H. Liu, Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis, Bioresour. Technol., 132(2013), p. 423.

    Article  CAS  Google Scholar 

  25. D. Kim, K. Lee, and K.Y. Park, Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization, J. Ind. Eng. Chem., 42(2016), p. 95.

    Article  CAS  Google Scholar 

  26. Y.W. Huang, M.Q. Chen, and H.F. Luo, Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model, Chem. Eng. J., 298(2016), p. 154.

    Article  CAS  Google Scholar 

  27. J.J. Xu, H.B. Zuo, G.W. Wang, J.L. Zhang, K. Guo, and W. Liang, Gasification mechanism and kinetics analysis of coke using distributed activation energy model (DAEM), Appl. Therm. Eng., 152(2019), p. 605.

    Article  CAS  Google Scholar 

  28. J.M. Cai, W.X. Wu, and R.H. Liu, An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass, Renewable Sustainable Energy Rev., 36(2014), p. 236.

    Article  CAS  Google Scholar 

  29. J.X. Cai, B. Li, C.Y. Chen, J. Wang, M. Zhao, and K. Zhang, Hydrothermal carbonization of tobacco stalk for fuel application, Bioresour. Technol., 220(2016), p. 305.

    Article  CAS  Google Scholar 

  30. Q. Wu, S.T. Yu, N.J. Hao, T. Wells, X.Z. Meng, M. Li, Y.Q. Pu, S.X. Liu, and A.J. Ragauskas, Characterization of products from hydrothermal carbonization of pine, Bioresour. Technol., 244(2017), p. 78.

    Article  CAS  Google Scholar 

  31. H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, and C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86(2007), No. 12–13, p. 1781.

    Article  CAS  Google Scholar 

  32. D.Y. Chen, Y. Zheng, and X.F. Zhu, In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages, Bioresour. Technol., 131(2013), p. 40.

    Article  CAS  Google Scholar 

  33. M. Hu, Z.H. Chen, S.K. Wang, D.B. Guo, C.F. Ma, Y. Zhou, J. Chen, M. Laghari, S. Fazal, B. Xiao, B.P. Zhang, and S. Ma, Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method, Energy Convers. Manage., 118(2016), p. 1.

    Article  CAS  Google Scholar 

  34. Y.J. Wang, L. Qiu, M.Q. Zhu, G.T. Sun, T.L. Zhang, and K. Kang, Comparative evaluation of hydrothermal carbonization and low temperature pyrolysis of Eucommia ulmoides Oliver for the production of solid biofuel, Sci. Rep., 9(2019), No. 1, art. No. 5535.

  35. G. Várhegyi, P. Szabó, E. Jakab, F. Till, and J.R. Richard, Mathematical modeling of char reactivity in Ar-O2 and CO2-O2 mixtures, Energy Fuels, 10(1996), No. 6, p. 1208.

    Article  Google Scholar 

  36. Q.V. Bach, K.Q. Tran, and Ø. Skreiberg, Comparative study on the thermal degradation of dry- and wet-torrefied woods, Appl. Energy, 185(2017), p. 1051.

    Article  CAS  Google Scholar 

  37. X.S. Yuan, T. He, H.L. Cao, and Q.X. Yuan, Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods, Renew. Energy, 107(2017), p. 489.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52074029, 51804026) and the USTB—NTUT Joint Research Program (No. 06310063). Chuan Wang would like to acknowledge the funding support from Vinnova (dnr: 2017-01327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Ren or Guangwei Wang.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Ren, S., Wang, G. et al. Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model. Int J Miner Metall Mater 29, 464–472 (2022). https://doi.org/10.1007/s12613-021-2305-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2305-3

Keywords

Navigation