Skip to main content

Advertisement

Log in

Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

In order to study the effects of Nd addition on microstructure and mechanical properties of Mg-Gd-Zn-Zr alloys, the microstructure and mechanical properties of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5wt%, and 1wt%) alloys were investigated by using optical microscope, scanning electron microscope, X-ray diffractometer, nano indentation tester, microhardness tester, and tensile testing machine. The results show that the microstructures mainly consist of α-Mg matrix, eutectic phase, and stacking faults. The addition of Nd plays a significant role in grain refinement and uniform microstructure. The tensile yield strength and microhardness increase but the compression yield strength decreases with increasing Nd addition, leading to weakening tension—compression yield asymmetry in reverse of the Mg-12Gd-2Zn-xNd-0.4Zr alloys. The highest ultimate tensile strength (194 MPa) and ultimate compression strength (397 MPa) are obtained with 1wt% Nd addition of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.X. Li, C.L. Yang, X.Q. Zeng, P.P. Jin, D. Qiu, and W.J. Ding, Microstructure evolution and mechanical properties of magnesium alloys containing long period stacking ordered phase, Mater. Charact., 141(2018), p. 286.

    Article  CAS  Google Scholar 

  2. D.K. Xu, E.H. Han, and Y.B. Xu, Effect of long-period stacking ordered phase on microstructure, mechanical property and corrosion resistance of Mg alloys: A review, Prog. Nat. Sci. Mater. Int., 26(2016), No. 2, p. 117.

    Article  CAS  Google Scholar 

  3. Q.Z. Liu, X.F. Ding, Y.P. Liu, and X.J. Wei, Analysis on micro-structure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy and its reinforcement mechanism, J. Alloys Compd., 690(2017), p. 961.

    Article  CAS  Google Scholar 

  4. J.S. Xie, J.H. Zhang, Z.H. You, et al., Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying, J. Magnes. Alloys, 9(2021), No. 1, p. 41.

    Article  CAS  Google Scholar 

  5. A.M. Majd, M. Farzinfar, M. Pashakhanlou, and M.J. Nayyeri, Effect of RE elements on the microstructural and mechanical properties of as-cast and age hardening processed Mg-4Al-2Sn alloy, J. Magnes. Alloys, 6(2018), No. 3, p. 309.

    Article  CAS  Google Scholar 

  6. Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  7. S.J. Wang, Z. Han, Y.J. Nie, et al., Modified mechanical properties of Mg-Nd-Zn-Ag-Zr alloy by solution treatment for cardiovascular stent application, Mater. Res. Express, 6(2019), No. 8, art. No. 085416.

  8. W.B. Luo, Z.Y. Xue, and W.M. Mao, Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 869.

    Article  CAS  Google Scholar 

  9. J.X. Chen, L.L. Tan, I.P. Etim, and K. Yang, Comparative study of the effect of Nd and Y content on the mechanical and biodegradable properties of Mg-Zn-Zr-xNd/Y (x = 0.5, 1, 2) alloys, Mater. Technol., 33(2018), No. 10, p. 659.

    Article  CAS  Google Scholar 

  10. L.K. Singh, A. Bhadauria, A. Srinivasan, U.T.S. Pillai, and B.C. Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 901.

    Article  CAS  Google Scholar 

  11. X.B. Zhang, J.W. Dai, Q.S. Dong, Z.X. Ba, and Y.J. Wu, Corrosion behavior and mechanical degradation of as-extruded Mg-Gd-Zn-Zr alloys for orthopedic application, J. Biomed. Mater. Res. Part B, 108(2020), No. 3, p. 698.

    Article  CAS  Google Scholar 

  12. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto, Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa, Mater. Trans., 42(2001), No. 7, p. 1172.

    Article  CAS  Google Scholar 

  13. A. Inoue, Y. Kawamura, M. Matsushita, K. Hayashi, and J. Koike, Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, J. Mater. Res., 16(2001), No. 7, p. 1894.

    Article  CAS  Google Scholar 

  14. Y.H. Zhang, Y.Q. Li, W. Zhang, et al., Gaseous hydrogen storage properties of Mg-Y-Ni-Cu alloys prepared by melt spinning, J. Rare Earths, 37(2019), No. 7, p. 750.

    Article  CAS  Google Scholar 

  15. Z.W. Geng, D.H. Xiao, and L. Chen, Microstructure, mechanical properties, and corrosion behavior of degradable Mg-Al-Cu-Zn-Gd alloys, J. Alloys Compd., 686(2016), p. 145.

    Article  CAS  Google Scholar 

  16. Z.B. Ding, Y.H. Zhao, R.P. Lu, et al., Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 4, p. 722.

    Article  CAS  Google Scholar 

  17. S.J. Ouyang, W.C. Liu, G.H. Wu, et al., Microstructure and mechanical properties of as-cast Mg-8Li-xZn-yGd (x = 1, 2, 3, 4; y = 1, 2) alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 6, p. 1211.

    Article  CAS  Google Scholar 

  18. K. Hagihara, Z.X. Li, M. Yamasaki, Y. Kawamura, and T. Nakano, Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys, Acta Mater., 163(2019), p. 226.

    Article  CAS  Google Scholar 

  19. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Strengthening mechanisms in magnesium alloys containing ternary I, W and LPSO phases, J. Mater. Sci. Technol., 34(2018), No. 7, p. 1110.

    Article  CAS  Google Scholar 

  20. J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, and H.M. Sui, Effect of solution treatment on microstructure and corrosion properties of Mg-4Gd-1Y-1Zn-0.5Ca-1Zr alloy, Acta Metall. Sinica Engl. Lett., 31(2018), No. 8, p. 865.

    Article  CAS  Google Scholar 

  21. Z.Y. Xue, Y.J. Ren, W.B. Luo, Y. Ren, P. Xu, and C. Xu, Microstructure evolution and mechanical properties of a large-sized ingot of Mg-9Gd-3Y-1.5Zn-0.5Zr (wt%) alloy after a lower-temperature homogenization treatment, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 271.

    Article  CAS  Google Scholar 

  22. C. Xu, J.H. Zhang, S.J. Liu, et al., Microstructure, mechanical and damping properties of Mg-Er-Gd-Zn alloy reinforced with stacking faults, Mater. Des., 79(2015), p. 53.

    Article  CAS  Google Scholar 

  23. Y. Feng, J.H. Zhang, P.F. Qin, et al., Characterization of elevated-temperature high strength and decent thermal conductivity extruded Mg-Er-Y-Zn alloy containing nano-spaced stacking faults, Mater. Charact., 155(2019), art. No. 109823.

  24. L. Zhang, J.H. Zhang, C. Xu, Y.B. Jing, J.P. Zhuang, R.Z. Wu, and M.L. Zhang, Formation of stacking faults for improving the performance of biodegradable Mg-Ho-Zn alloy, Mater. Lett., 133(2014), p. 158.

    Article  CAS  Google Scholar 

  25. H.J. Si, Y.X. Jiang, Y. Tang, and L.J. Zhang, Stable and metastable phase equilibria in binary Mg-Gd system: A comprehensive understanding aided by CALPHAD modeling, J. Magnes. Alloys, 7(2019), No. 3, p. 501.

    Article  CAS  Google Scholar 

  26. X.B. Zhang, Z.X. Ba, Z.Z. Wang, Y.J. Wu, and Y.J. Xue, Effect of LPSO structure on mechanical properties and corrosion behavior of as-extruded GZ51K magnesium alloy, Mater. Lett., 163(2016), p. 250.

    Article  CAS  Google Scholar 

  27. X.G. Zhang, L.G. Meng, C.F. Fang, P. Peng, F. Ja, and H. Hao, Effect of Nd on the microstructure and mechanical properties of Mg-8Gd-5Y-2Zn-0.5Zr alloy, Mater. Sci. Eng. A, 586(2013), p. 19.

    Article  CAS  Google Scholar 

  28. Z.B. Ding, R.P. Lu, Y.H. Zhao, et al., The microstructure and mechanical properties of As-cast Mg-10Gd-3Y-xZn-0.6Zr (x = 0, 0.5, 1 and 2 wt%) alloys, Mater. Res., 21(2018), No. 5, art. No. e20170992.

  29. M. Li, K. Zhang, Z.W. Du, X.G. Li, and M.L. Ma, Microstructure evolution and mechanical properties of Mg-7Gd-3Y-1Nd-1Zn-0.5Zr alloy, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1835.

    Article  CAS  Google Scholar 

  30. F.S. Pan, S.Q. Luo, A.T. Tang, J. Peng, and Y. Lu, Influence of stacking fault energy on formation of long period stacking ordered structures in Mg-Zn-Y-Zr alloys, Prog. Nat. Sci.: Mater. Int., 21(2011), No. 6, p. 485.

    Article  Google Scholar 

  31. S. Kamrani and C. Fleck, Effects of calcium and rare-earth elements on the microstructure and tension—compression yield asymmetry of ZEK100 alloy, Mater. Sci. Eng. A, 618(2014), p. 238.

    Article  CAS  Google Scholar 

  32. E. Dogan, I. Karaman, G. Ayoub, and G. Kridli, Reduction in tension-compression asymmetry via grain refinement and texture design in Mg-3Al-1Zn sheets, Mater. Sci. Eng. A, 610(2014), p. 220.

    Article  CAS  Google Scholar 

  33. S.H. Park, J.H. Lee, B.G. Moon, and B.S. You, Tension-compression yield asymmetry in as-cast magnesium alloy, J. Alloys Compd., 617(2014), p. 277.

    Article  CAS  Google Scholar 

  34. Y. Jiang, Y.A. Chen, and Y. Wang, Compound role of tension twins and compression twins in microstructure and mechanical properties of Mg-Sn-Li rod, Mater. Sci. Eng. A, 682(2017), p. 31.

    Article  CAS  Google Scholar 

  35. X.Y. Xu, X.H. Chen, W.W. Du, Y.X. Geng, and F.S. Pan, Effect of Nd on microstructure and mechanical properties of asextruded Mg-Y-Zr-Nd alloy, J. Mater. Sci. Technol., 33(2017), No. 9, p. 926.

    Article  CAS  Google Scholar 

  36. G.S. Hu, D.F. Zhang, T. Tang, et al., Effects of Nd addition on microstructure and mechanical properties of Mg-6Zn-1Mn-4Sn alloy, Mater. Sci. Eng. A, 634(2015), p. 5.

    Article  CAS  Google Scholar 

  37. X. Liu, Z.Q. Zhang, Q.C. Le, and L. Bao, Effects of Nd/Gd value on the microstructures and mechanical properties of Mg-Gd-Y-Nd-Zr alloys, J. Magnes. Alloys, 4(2016), No. 3, p. 214.

    Article  CAS  Google Scholar 

  38. X. Zhang, J. Dai, H. Yang, S. Liu, X. He, and Z. Wang, Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg-Gd-Zn(-Ca) alloys, Mater. Technol., 32(2017), No. 7, p. 399.

    Article  CAS  Google Scholar 

  39. H. Zengin and Y. Turen, Effect of Y addition on microstructure and corrosion behavior of extruded Mg-Zn-Nd-Zr alloy, J. Magnes. Alloys, 8(2020), No. 3, p. 640.

    Article  CAS  Google Scholar 

  40. K. Matsubara, H. Kimizuka, and S. Ogata, Formation of (1121) twins from I1-type stacking faults in Mg: A molecular dynamics study, Comput. Mater. Sci., 122(2016), p. 314.

    Article  CAS  Google Scholar 

  41. B.L. Yin, Z.X. Wu, and W.A. Curtin, First-principles calculations of stacking fault energies in Mg-Y, Mg-Al and Mg-Zn alloys and implications for <c + a>activity, Acta Mater., 136(2017), p. 249.

    Article  CAS  Google Scholar 

  42. Y.X. Du, Y.J. Wu, L.M. Peng, J. Chen, X.Q. Zeng, and W.J. Ding, Formation of lamellar phase with 18R-type LPSO structure in an as-cast Mg96Gd3Zn1(at%) alloy, Mater. Lett., 169(2016), p. 168.

    Article  CAS  Google Scholar 

  43. Y.J. Wu, D.L. Lin, X.Q. Zeng, L.M. Peng, and W.J. Ding, Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg-Gd-Zn-Zr alloy, J. Mater. Sci., 44(2009), No. 6, p. 1607.

    Article  CAS  Google Scholar 

  44. X. Zhang, S.K. Kairy, J. Dai, and N. Birbilis, A closer look at the role of nanometer scale solute-rich stacking faults in the localized corrosion of a magnesium alloy GZ31K, J. Electrochem. Soc., 165(2018), No. 7, p. C310.

    Article  CAS  Google Scholar 

  45. X.B. Zhang, J.W. Dai, R.F. Zhang, Z.X. Ba, and N. Birbilis, Corrosion behavior of Mg-3Gd-1Zn-0.4Zr alloy with and without stacking faults, J. Magnes. Alloys, 7(2019), No. 2, p. 240.

    Article  CAS  Google Scholar 

  46. S.Q. Yin, Z.Q. Zhang, X. Liu, et al., Effects of Zn/Gd ratio on the microstructures and mechanical properties of Mg-Zn-Gd-Zr alloys, Mater. Sci. Eng. A, 695(2017), p. 135.

    Article  CAS  Google Scholar 

  47. X.M. Zong, D. Wang, W. Liu, K.B. Nie, C.X. Xu, and J.S. Zhang, Effect of precipitated phases on corrosion of Mg95.8Gd3Zn1Zr0.2 alloy with long-period stacking ordered structure, Acta Metall. Sinica Engl. Lett., 29(2016), No. 1, p. 32.

    Article  CAS  Google Scholar 

  48. Y.J. Wu, X.Q. Zeng, D.L. Lin, L.M. Peng, and W.J. Ding, The microstructure evolution with lamellar 14H-type LPSO structure in an Mg96.5Gd2.5Zn1 alloy during solid solution heat treatment at 773 K, J. Alloys Compd., 477(2009), No. 1–2, p. 193.

    Article  CAS  Google Scholar 

  49. W.J. Ding, Y.J. Wu, L.M. Peng, X.Q. Zeng, G.Y. Yuan, and D.L. Lin, Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg-Gd-Zn-Zr alloys, J. Mater. Res., 24(2009), No. 5, p. 1842.

    Article  CAS  Google Scholar 

  50. J.Y. Zhang, M. Xu, X.Y. Teng, and M. Zuo, Effect of Gd addition on microstructure and corrosion behaviors of Mg-Zn-Y alloy, J. Magnes. Alloys, 4(2016), No. 4, p. 319.

    Article  CAS  Google Scholar 

  51. J. Wei, Q.D. Wang, L. Zhang, et al., Microstructure refinement of Mg-Al-RE alloy by Gd addition, Mater. Lett., 246(2019), p. 125.

    Article  CAS  Google Scholar 

  52. X.Y. Hu, P.H. Fu, D. StJohn, L.M. Peng, M. Sun, and M.X. Zhang, On grain coarsening and refining of the Mg-3Al alloy by Sm, J. Alloys Compd., 663(2016), p. 387.

    Article  CAS  Google Scholar 

  53. K. Wei, L.R. Xiao, B. Gao, et al., Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults, J. Magnes. Alloys, 8(2020), No. 4, p. 1221.

    Article  CAS  Google Scholar 

  54. J.H. He, L. Jin, F.H. Wang, S. Dong, and J. Dong, Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions, J. Magnes. Alloys, 5(2017), No. 4, p. 423.

    Article  CAS  Google Scholar 

  55. S. Lv, F.Z. Meng, X.L. Lu, et al., Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mg-6.0Zn-0.5Zr (wt.%) alloy, J. Alloys Compd., 806(2019), p. 1166.

    Article  CAS  Google Scholar 

  56. P. Papanastasiou and D. Durban, Singular crack-tip plastic fields in Tresca and Mohr-Coulomb solids, Int. J. Solids Struct., 136–137(2018), p. 250.

    Article  Google Scholar 

  57. Q.H. Wang, Y. Song, B. Jiang, et al., Fabrication of Mg/Mg composite with sleeve-core structure and its effect on room-temperature yield asymmetry via bimetal casting-co-extrusion, Mater. Sci. Eng. A, 769(2020), art. No. 138476.

  58. L.B. Tong, M.Y. Zheng, S. Kamado, et al., Reducing the tension-compression yield asymmetry of extruded Mg-Zn-Ca alloy via equal channel angular pressing, J. Magnes. Alloys, 3(2015), No. 4, p. 302.

    Article  CAS  Google Scholar 

  59. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248.

    Article  CAS  Google Scholar 

  60. Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, and M.Y. Zheng, Tension-compression asymmetry of extruded Mg-Gd-Y-Zr alloy with a bimodal microstructure studied by in situ synchrotron diffraction, Mater. Des., 170(2019), art. No. 107705.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52071175), the Natural Science Foundation of Higher Education Institutions of Jiangsu Province — Key Project, China (No. 18KJA430008), the Key Research & Development Plan (Social Development) of Jiangsu Province, China (No. BE2020702), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX21_0923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Zhang.

Additional information

Conflict of Interest

The authors have no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, L., Wang, R. & Zhang, X. Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults. Int J Miner Metall Mater 29, 1570–1577 (2022). https://doi.org/10.1007/s12613-021-2264-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2264-8

Keywords

Navigation