Skip to main content
Log in

Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200°C and constant strain rates of 0.001, 0.01, 0.1, and 1 s−1. Hot flow curves were used to determine the strain hardening exponent and the strain rate sensitivity exponent, and to construct the processing maps. Variations of the strain hardening exponent with strain were used to predict the microstructural evolutions during the hot deformation. Four variations were distinguished reflecting the different microstructural changes. Based on the analysis of the strain hardening exponent versus strain curves, the microstructural evolutions were dynamic recovery, single and multiple peak dynamic recrystallization, and interactions between dynamic recrystallization and precipitation. The strain rate sensitivity variations at an applied strain of 0.8 and strain rate of 0.1 s−1 were compared with the microstructural evolutions. The results demonstrate the existence of a reliable correlation between the strain rate sensitivity values and evolved microstructures. Additionally, the power dissipation map at the applied strain of 0.8 was compared with the resultant microstructures at predetermined deformation conditions. The microstructural evolutions strongly correlated to the power dissipation ratio, and dynamic recrystallization occurred completely at lower power dissipation ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Duncombe, Plastic instability and growth of grooves and patches in plates or tubes, Int. J. Mech. Sci., 14(1972), No. 5, p. 325.

    Article  Google Scholar 

  2. A.K. Ghosh, The influence of strain hardening and strain-rate sensitivity on sheet metal forming, J. Eng. Mater. Technol., 99(1977), No. 3, p. 264.

    Article  CAS  Google Scholar 

  3. N. Tahreen, D.L. Chen, M. Nouri, and D.Y. Li, Effects of aluminum content and strain rate on strain hardening behavior of cast magnesium alloys during compression, Mater. Sci. Eng. A, 594(2014), p. 235.

    Article  CAS  Google Scholar 

  4. A.K. Ghosh, Tensile instability and necking in materials with strain hardening and strain-rate hardening, Acta Metall., 25(1977), No. 12, p. 1413.

    Article  Google Scholar 

  5. D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim, and N.J. Kim, Relationship between stretch formability and work-hardening capacity of twin-roll cast Mg alloys at room temperature, Scripta Mater., 61(2009), No. 7, p. 768.

    Article  CAS  Google Scholar 

  6. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High tensile ductility in a nanostructured metal, Nature, 419(2002), No. 6910, p. 912.

    Article  CAS  Google Scholar 

  7. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals, Mater. Sci. Eng. A, 381(2004), No. 1–2, p. 71.

    Article  Google Scholar 

  8. O.D. Sherby, Advances in superplasticity and in superplastic materials, ISIJ Int., 29(1989), No. 8, p. 698.

    Article  CAS  Google Scholar 

  9. I. Charit and R.S. Mishra, High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing, Mater. Sci. Eng. A, 359(2003), No. 1–2, p. 290.

    Article  Google Scholar 

  10. Y.M. Wang and E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Mater., 52(2004), No. 6, p. 1699.

    Article  CAS  Google Scholar 

  11. Y.V.R.K. Prasad and K.P. Rao, Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability, Mater. Sci. Eng. A, 487(2008), No. 1–2, p. 316.

    Article  Google Scholar 

  12. C.Y. Wang, X.J. Wang, H. Chang, K. Wu, and M.Y. Zheng, Processing maps for hot working of ZK60 magnesium alloy, Mater. Sci. Eng. A, 464(2007), No. 1–2, p. 52.

    Article  Google Scholar 

  13. S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, and W.T. Fu, Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel, Mater. Sci. Eng. A, 517(2009), No. 1–2, p. 312.

    Article  Google Scholar 

  14. S.V.S.N. Murty, B.N. Rao, and B.P. Kashyap, Identification of flow instabilities in the processing maps of AISI 304 stainless steel, J. Mater. Process. Technol., 166(2005), No. 2, p. 268.

    Article  CAS  Google Scholar 

  15. B.F. Guo, H.P. Ji, X.G. Liu, L. Gao, R.M. Dong, M. Jin, and Q.H. Zhang, Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel, J. Mater. Eng. Perform., 21(2012), No. 7, p. 1455.

    Article  CAS  Google Scholar 

  16. M.S. Ghazani and B. Eghbali, A ductile damage criterion for AISI 321 austenitic stainless steel at different temperatures and strain rates, Arabian J. Sci. Eng., 43(2018), No. 9, p. 4855.

    Article  CAS  Google Scholar 

  17. M.S. Ghazani, B. Eghbali, and G.R. Ebrahimi, Evaluation of the kinetics of dynamic recovery in AISI 321 austenitic stainless steel using hot flow curves, Trans. Indian Inst. Met., 70(2017), No. 7, p. 1755.

    Article  CAS  Google Scholar 

  18. J. Rasti, A. Najafizadeh, and M. Meratian, Correcting the stress-strain curve in hot compression test using finite element analysis and Taguchi method, Int. J. Iron Steel Soc. Iran, 8(2011), No. 1, p. 26.

    Google Scholar 

  19. S.D. Antolovich and R.W. Armstrong, Plastic strain localization in metals: Origins and consequences, Prog. Mater. Sci., 59(2014), p. 1.

    Article  Google Scholar 

  20. M.S. Ghazani and B. Eghbali, Characterization of the hot deformation microstructure of AISI 321 austenitic stainless steel, Mater. Sci. Eng. A, 730(2018), p. 380.

    Article  CAS  Google Scholar 

  21. T. Sakai and J.J. Jonas, Overview no. 35 dynamic recrystallization: Mechanical and microstructural considerations, Acta Metall., 32(1984), No. 2, p. 189.

    Article  CAS  Google Scholar 

  22. Y.P. Li, E. Onodera, H. Matsumoto, and A. Chiba, Correcting the stress-strain curve in hot compression process to high strain level, Metall. Mater. Trans. A, 40(2009), No. 4, p. 982.

    Article  CAS  Google Scholar 

  23. J. May, H.W. Höppel, and M. Göken, Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation, Scripta Mater., 53(2005), No. 2, p. 189.

    Article  CAS  Google Scholar 

  24. Y.V.R.K. Prasad, K.P. Rao, and S. Sasidhar, Hot Working Guide: A Compendium of Processing Maps, 2nd ed., ASM International, Kinsman Road Materials Park, OH, 2015.

    Google Scholar 

  25. A. Momeni and K. Dehghani, Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps, Mater. Sci. Eng. A, 527(2010), No. 21–22, p. 5467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beitallah Eghbali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazani, M.S., Eghbali, B. Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel. Int J Miner Metall Mater 28, 1799–1810 (2021). https://doi.org/10.1007/s12613-020-2163-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2163-4

Keywords

Navigation