Skip to main content
Log in

Passivity breakdown of 13Cr stainless steel under high chloride and CO2 environment

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Herein, the effect of high chloride ion (Cl) concentration on the corrosion behavior and passive film breakdown of 13Cr martensitic stainless steel under CO2 environment was demonstrated. The Cl concentration was varied from 30 to 150 g/L and cyclic potentiodynamic polarization was conducted to investigate the influence of the Cl concentration on the corrosion potential (Ecorr), passive breakdown potential (Epit), and repassivation potential (Erep). The results of the polarization curves revealed that 13Cr stainless steel is susceptible to pitting under high Cl concentration. The passive breakdown potential and repassivation potential decreased with the increase of Cl concentration. The semiconducting behavior of the passive film was investigated by Mott-Schottky analysis and the point defect model (PDM). It was observed that the iron cation vacancies and oxygen vacancies were continuously generated by autocatalytic reactions and the higher Cl concentration resulted in higher vacancies in the passive film. Once the excess vacancies condensed at the metal/film interface, the passive film became locally detached from the metal, which led to the breakdown of the passive film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ueda, 2006 F.N. speller award lecture: Development of corrosion-resistance alloys for the oil and gas industrybased on spontaneous passivity mechanism, Corrosion, 62(2006), No. 10, p. 856.

    Article  Google Scholar 

  2. D.S. Carvalho, C.J.B. Joia, and O.R. Mattos, Corrosion rate of iron and iron-chromium alloys in CO2 medium, Corros. Sci., 47(2005), No. 12, p. 2974.

    Article  Google Scholar 

  3. B.R. Linter and G.T. Burstein, Reactions of pipeline steels in carbon dioxide solutions, Corros. Sci., 41(1999), No. 1, p. 117.

    Article  Google Scholar 

  4. M.J. Ke and J. Boles, Corrosion behavior of various 13 chromium tubulars in acid stimulation fluids, [in] SPE International Symposium on Oilfield Corrosion, Aberdeen, 2004, art. No. 87561.

    Google Scholar 

  5. L. Calabrese, M. Galeano, E. Proverbio, D.D. Pietro, F. Cappuccini, and A. Donato, Monitoring of 13% Cr martensitic stainless steel corrosion in chloride solution in presence of thiosulphate by acoustic emission technique, Corros. Sci., 111(2016), p. 151.

    Article  Google Scholar 

  6. Z.F. Yin, X.Z. Wang, L. Liu, J.Q. Wu, and Y.Q. Zhang, Characterization of corrosion product layers from CO2, corrosion of 13Cr stainless steel in simulated oilfield solution, J. Mater. Eng. Perform., 20(2011), No. 7, p. 1330.

    Article  Google Scholar 

  7. H.Y. Ma, Y.S. He, K.Y. Lee, and K.S. Shin, Effect of heat treatment on microstructural evolution of 13Cr martensitic stainless steel, Key Eng. Mater., 727(2017), p. 29.

    Article  Google Scholar 

  8. K. Krishnan, Sulfide stress cracking (SSC) resistance of AISI 420 modified (13Cr) martensitic stainless steel bar stock, [in] Corrosion 2017, New Orleans, 2017, art. No. 9645.

    Google Scholar 

  9. M.D. Pereda, C.A. Gervasi, C.L. Llorente, and P.D. Bilmes, Microelectrochemical corrosion study of super martensitic welds in chloride-containing media, Corros. Sci., 53(2011), No. 12, p. 3934.

    Article  Google Scholar 

  10. J.J. Zou, F.Q. Xie, N.M. Lin, X.F. Yao, W. Tian, and B. Tang, Formation of chromium coating and comparative examination on corrosion resistance with 13Cr steel in CO2-saturated simulated oilfield brine, Surf. Rev. Lett., 20(2013), No. 3–4, art. No. 50041.

    Google Scholar 

  11. D. Sidorin, D. Pletcher, and B. Hedges, The electrochemistry of 13% chromium stainless steel in oilfield brines, Electrochim. Acta, 50(2005), No. 20, p. 4109.

    Article  Google Scholar 

  12. J.M. Bastidas, C.L. Torres, E. Cano, and J.L. Polo, Influence of molybdenum on passivation of polarised stainless steels in a chloride environment, Corros. Sci., 44(2002), No. 3, p. 625.

    Article  Google Scholar 

  13. R.C. Newman, 2001 W.R. Whitney award lecture: Understanding the corrosion of stainless steel, Corrosion, 57(2001), No. 12, p. 1030.

    Article  Google Scholar 

  14. Z.J. Liu, X.Q. Cheng, S.J. Lu, and X.G. Li, Effect of chloride ions on 316L stainless steel in cyclic cooling water, Acta Metall. Sin. Engl. Lett., 23(2010), No. 6, p. 431.

    Google Scholar 

  15. T.H. Piao and S.M. Park, Spectroelectrochemical studies of passivation and transpassive breakdown reactions of stainless steel, J. Electrochem. Soc., 144(1997), No. 10, p. 3371.

    Article  Google Scholar 

  16. X.W. Lei, H.Y. Wang, F.X. Mao, J.P. Zhang, M.F. Zhao, A.Q. Fu, Y.R. Feng, and D.D. Macdonald, Electrochemical behaviour of martensitic stainless steel after immersion in a H2S-saturated solution, Corros. Sci., 131(2018), p. 164.

    Article  Google Scholar 

  17. X.Q. Yue, L. Zhang, D.P. Li, H. Honda, M.X. Lu, Z. Wang, and X. Tang, Effect of traces of dissolved oxygen on the passivation stability of super 13Cr stainless steel under high CO2/H2S conditions, Int. J. Electrochem. Soc., 12(2017), p. 7853.

    Article  Google Scholar 

  18. B.W. Luo, J. Zhou, P.P. Bai, S.Q. Zheng, T. An, and X.L. Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system: products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 646.

    Article  Google Scholar 

  19. J. Banas, U. Lelek-Borkowska, B. Mazurkiewicz, and W. Solarski, Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water, Electrochim. Acta, 52(2007), No. 18, p. 5704.

    Article  Google Scholar 

  20. S. Pahlavan, S. Moazen, I. Taji, K. Saffar, M. Hamrah, M.H. Moayed, and S.M. Beidokhti, Pitting corrosion of martensitic stainless steel in halide bearing solutions, Corros. Sci., 112(2016), p. 233.

    Article  Google Scholar 

  21. H.Y. Li, C.F. Dong, K. Xiao, X.G. Li, and P. Zhong, Effects of chloride ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1286.

    Article  Google Scholar 

  22. X.C. Han, J. Li, K.Y. Zhao, W. Zhang, and J. Su, Effect of chloride on semiconducting properties of passive films formed on supermartensitic stainless steel in NaHCO3 solution, J. Iron Steel Res. Int., 20(2013), No. 5, p. 74.

    Article  Google Scholar 

  23. M. Adeli, M.A. Golozar, and K. Raeissi, Pitting corrosion of SAF2205 duplex stainless steel in acetic acid containing bromide and chloride, Chem. Eng. Commun., 197(2010), No. 11, p. 1404.

    Article  Google Scholar 

  24. S.F. Yang and D.D. Macdonald, Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion, Electrochim. Acta, 52(2007), No. 5, p. 1871.

    Article  Google Scholar 

  25. G.Z. Meng, Y. Li, Y.W. Shao, T. Zhang, Y.Q. Wang, and F.H. Wang, Effect of Cl- on the properties of the passive films formed on 316L stainless steel in acidic solution, J. Mater. Sci. Technol., 30(2014), No. 3, p. 253.

    Article  Google Scholar 

  26. Y.M. Tang, Y. Zuo, J.N. Wang, X.H. Zhao, B. Niu, and B. Lin, The metastable pitting potential and its relation to pitting potential for four materials in chloride solutions, Corros. Sci., 80(2014), p. 111.

    Article  Google Scholar 

  27. H.B. Li, Z.H. Jiang, H. Feng, H.C. Zhu, B.H. Sun, and Z. Li, Corrosion behavior of ferritic stainless steel with 15wt% chromium for the automobile exhaust system, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 850.

    Article  Google Scholar 

  28. L. Freire, M.J. Carmezim, M.G.S. Ferreira, and M.F. Montemor, The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study, Electrochim. Acta, 55(2010), No. 21, p. 6174.

    Article  Google Scholar 

  29. A. Fattah-Alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh, The semiconducting properties of passive films formed on AISI 316L and AISI 321 stainless steels: A test of the point defect model (PDM), Corros. Sci., 53(2011), No. 10, p. 3186.

    Article  Google Scholar 

  30. Z. Wang, L. Zhang, X. Tang, Z.Y. Cui, J.P. Xue, and M.X. Lu, Investigation of the deterioration of passive films in H2S-containing solutions, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 943.

    Article  Google Scholar 

  31. K.N. Oh, S.H. Ahn, K.S. Eom, and H.S. Kwon, A study on the localized corrosion and repassivation kinetics of Fe-20Cr-xNi (x = 0–20wt%) stainless steels via electrochemical analysis, Corros. Sci., 100(2015), p. 158.

    Article  Google Scholar 

  32. G. Goodlet, S. Faty, S. Cardoso, P.P. Freitas, A.M.P. Simões, M.G.S. Ferreira, and M. Da C. Belo, The electronic properties of sputtered chromium and iron oxide films, Corros. Sci., 46(2004), No. 6, p. 1479.

    Article  Google Scholar 

  33. N.B. Hakiki, S. Boudin, B. Rondot, and M. Da C. Belo, The electronic structure of passive films formed on stainless steels, Corros. Sci., 37(1995), No. 11, p. 1809.

    Article  Google Scholar 

  34. F. Gaben, B. Vuillemin, and R. Oltra, Influence of the chemical composition and electronic structure of passive films grown on 316L SS on their transient electrochemical behavior, J. Electrochem. Soc., 151(2004), No. 11, p. B595.

    Article  Google Scholar 

  35. S. Virtanen, P. Schmuki, H. Böhni, P. Vuoristo, and T. Mantyla, Artificial Cr- and Fe-oxide passive layers prepared by sputter-deposition, J. Electrochem. Soc., 142(1995), No. 9, p. 3067.

    Article  Google Scholar 

  36. J.H. Ding, L. Zhang, M.X. Lu, J. Wang, Z.B. Wen, and W.H. Hao, The electrochemical behaviour of 316L austenitic stainless steel in Cl- containing environment under different H2S partial pressures, Appl. Surf. Sci., 289(2014), p. 33.

    Article  Google Scholar 

  37. A. Fattah-Alhosseini and S. Vafaeian, Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott-Schottky analysis and EIS measurements, J. Alloys Compd., 639(2015), p. 301.

    Article  Google Scholar 

  38. P. Schmuki, M. Büchler, S. Virtanen, H. Böhni, R. Müller, and L.J. Gauckler, Bulk metal oxides as a model for the electronic properties of passive films, J. Electrochem. Soc., 142(1995), No. 10, p. 3336.

    Article  Google Scholar 

  39. D.D. Macdonald, The passive state in our reactive metals-based civilization, Arabian J. Sci. Eng., 37(2012), No. 5, p. 1143.

    Article  Google Scholar 

  40. D.D. Macdonald, The point defect model for the passive state, J Electrochem. Soc., 139(1992), No. 12, p. 3434.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Major Project of China (No. 2016ZX05028–004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hx., Li, Dp., Zhang, L. et al. Passivity breakdown of 13Cr stainless steel under high chloride and CO2 environment. Int J Miner Metall Mater 26, 329–336 (2019). https://doi.org/10.1007/s12613-019-1741-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1741-9

Keywords

Navigation