Skip to main content
Log in

Relationship between copper content of slag and matte in the SKS copper smelting process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In the newly developed oxygen-enriched bottom-blowing copper smelting process (also known as the SKS copper smelting process), Cu loss in slag is one of the most concerning issues. This paper presents our research results concerning the relationship between the Cu content of the matte and slag in the SKS process; the results are based on actual industrial production in the Dongying Fangyuan copper smelter. The results show that the matte grade strongly influences Cu losses in slag. The dissolved and entrained losses account for 10%–20% and 80%–90% of the total SKS industrial Cu losses in slag, respectively. With increasing matte grade, the dissolved and entrained Cu losses in the SKS slag both increase continuously. When the matte grade is greater than 68%, the content of Cu in the smelting slag increases much more dramatically. To obtain a high direct recovery of copper, the matte grade should be less than 75% in industrial SKS copper production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wang, W. Davenport, A. Siegmund, S. Yao, T. Gonzales, G. Walters, and D. George, Copper smelting: 2016 world copper smelting data, [in] 9th International Copper Conference (Copper 2016), Kobe, 2016, p. 322.

    Google Scholar 

  2. W.P. Liu and X.F. Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electrogenesis, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 621.

    Article  Google Scholar 

  3. J.S. Deng, S.M. Wen, J.Y. Deng, and D.D. Wu, Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 241.

    Article  Google Scholar 

  4. X.Y. Guo, Y.Z. Zhang, Q.M. Wang, and Z.S. Yuan, Advanced copper smelting technologies used to quadruple China copper production between 2000 and 2015, [in] 9th International Copper Conference (Copper 2016), Kobe, 2016, p. 330.

    Google Scholar 

  5. K.Q. Li, S. Ping, H.Y. Wang, and W. Ni, Recovery of iron from copper slag by deep reduction and magnetic beneficiation, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1035.

    Article  Google Scholar 

  6. Z.Y. Ma, H.Y. Yang, S.T. Huang, Y. Lü, and L. Xiong, Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 582.

    Article  Google Scholar 

  7. D.X. Wang, Y. Liu, Z.M. Zhang, T.A. Zhang, and X.L. Li, PIV measurements on physical models of bottom blown oxygen copper smelting furnace, Can. Metall. Q., 56(2017), No. 2, p. 221.

    Article  Google Scholar 

  8. P. Coursol, P.J. Mackey, J.P.T. Kapusta, and N.C. Valencia, Energy consumption in copper smelting: A new Asian horse in the race, JOM, 67(2015), No. 5, p. 1066.

    Article  Google Scholar 

  9. L. Shui, Z.X. Cui, X.D. Ma, M.A. Rhamdhani, A.V. Nguyen, and B.J. Zhao, Understanding of bath surface wave in bottom blown copper smelting furnace, Metall. Mater. Trans. B, 47(2016), No. 1, p. 135.

    Article  Google Scholar 

  10. W.F. Li, J. Zhan, Y.Q. Fan, C. Wei, C.F. Zhang, and J.Y. Hwang, Research and industrial application of a process for direct reduction of molten high-lead smelting slag, JOM, 69(2017), No. 4, p. 784.

    Article  Google Scholar 

  11. W.F. Liu, T.Z. Yang, D.C. Zhang, L. Chen, and Y.F. Liu, A new pyrometallurgical process for producing antimony white from by-product of lead smelting, JOM, 66(2014), No. 9, p. 1694.

    Article  Google Scholar 

  12. Q.M. Wang, X.Y. Guo, and Q.H. Tian, Copper smelting mechanism in oxygen bottom blown furnace, Trans. Nonferrous Met. Soc. China, 27(2017), No. 4, p. 946.

    Article  Google Scholar 

  13. R. Sridhar, J.M. Toguri, and S. Simeonov, Copper losses and thermodynamic considerations in copper smelting, Metall. Mater. Trans. B, 28(1997), No. 2, p. 191.

    Article  Google Scholar 

  14. M. Chen, Z.X. Cui, and B.J. Zhao, Slag chemistry of bottom blown copper smelting furnace at Dongying Fangyuan, [in] 6th International Symposium on High Temperature Metallurgical Processing, Orlando, 2015, p. 257.

    Chapter  Google Scholar 

  15. H.Q. Liu, Z.X. Cui, M. Chen, and B.J. Zhao, Phase equilibria study of the ZnO-“FeO”-SiO2-Al2O3 System at Po2 10-8 atm, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1113.

    Article  Google Scholar 

  16. P.F. Tan, Modeling and control of copper loss in smelting slag, JOM, 63(2011), No. 12, p. 51.

    Article  Google Scholar 

  17. H. Jalkanen, J. Vehviläinen, and J. Poijärvi, Copper in solidified copper smelter slags, Scand. J. Metall., 32(2003), No. 2, p. 65.

    Article  Google Scholar 

  18. A. Rusen, A. Geveci, Y.A. Topkaya, and B. Derin, Investigation of effect of colemanite addition on copper losses in matte smelting slag, Can. Metall. Q., 51(2012), No. 2, p. 157.

    Article  Google Scholar 

  19. A. Rusen, A. Geveci, Y.A. Topkaya, and B. Derin, Effects of some additives on copper losses to matte smelting slag, JOM, 68(2016), No. 9, p. 2323.

    Article  Google Scholar 

  20. P. Coursol, N.C. Valencia, P. Mackey, S. Bell, and B. Davis, Minimization of copper losses in copper smelting slag during electric furnace treatment, JOM, 64(2012), No. 11, p. 1305.

    Article  Google Scholar 

  21. Q.M. Wang, X.Y. Guo, S.S. Wang, L.L. Liao, and Q.H. Tian, Multiphase equilibrium modeling of oxygen bottom blown copper smelting process, Trans. Nonferrous Met. Soc. China, 27(2017), No. 11, p. 2503.

    Article  Google Scholar 

  22. Q.M. Wang, X.Y. Guo, Q.H. Tian, T. Jiang, M. Chen, and B.J. Zhao, Development and application of SKSSIM simulation software for the oxygen bottom blown copper smelting process, Metals, 7(2017), No. 10, p. 431.

    Article  Google Scholar 

  23. I. Imris, M. Sanchez, and G. Achurra, Copper losses to slags obtained from the El Teniente process, Miner. Process. Extr. Metall., 114(2005), No. 3, p. 135.

    Article  Google Scholar 

  24. A. Yazawa, S. Nakazawa, and Y. Takeda, Distribution behaviour of various elements in copper smelting systems, JOM, 36(1984), No. 8, p. 79.

    Article  Google Scholar 

  25. R. Shimpo, S. Goto, O. Ogawa, and I. Asakuru, A study on equilibrium between copper matte and slag, Can. Metall. Q., 25(1986), No. 2, p. 113.

    Article  Google Scholar 

  26. H.Q. Liu, Z.X. Cui, M. Chen, and B.J. Zhao, Phase equilibria study of the ZnO-‘FeO’-SiO2 System at fixed Po2 10-8 atm, Metall. Mater. Trans. B, 47(2016), No. 1, p.164.

    Article  Google Scholar 

  27. C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage thermochemical software and databases-recent developments, Calphad, 33(2009), No. 2, p. 295.

    Article  Google Scholar 

  28. B. Zhao, Phase Equilibria for Copper Smelting and Lead/Zinc Reduction Slags [Dissertations], University of Queensland, Brisbane, 1999, p. 68.

    Google Scholar 

  29. J.Z. Ma, F. Wang, L. Feng, and H.B. Huang, Method improvement for determination of ferrous iron in iron ore by potassium dichromate titrimetry, Chinese J. Inorg. Anal. Chem., 7(2017), No. 1, p. 39.

    Google Scholar 

  30. C. Wang and C.F. Zhang, Study on choosing the best grade matte copper smelting process, World Nonferrous Met., 1002–5065(2016), No. 9, p. 21.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51620105013) and Dongying Fangyuan Nonferrous Metals Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-yi Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Qm., Wang, Ss., Tian, M. et al. Relationship between copper content of slag and matte in the SKS copper smelting process. Int J Miner Metall Mater 26, 301–308 (2019). https://doi.org/10.1007/s12613-019-1738-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1738-4

Keywords

Navigation