Skip to main content
Log in

Reductive recovery of manganese from low-grade manganese dioxide ore using toxic nitrocellulose acid wastewater as reductant

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The hydrometallurgical strategy of extracting Mn from low-grade Mn ores has attracted attention for the production of electrolytic manganese metal (EMM). In this work, the reductive dissolution of low-grade MnO2 ores using toxic nitrocellulose acidic wastewater (NAW) as a reductant was investigated for the first time. Under the optimized conditions of an MnO2 ore dosage of 100 g·L−1, an ore particle size of −200 mesh, concentrated H2SO4-to-NAW volume ratio of 0.12, reaction temperature of 90°C, stirring speed at 160 r·min−1, and a contact time of 120 min, the reductive leaching efficiency of Mn and the total organic carbon (TOC) removal efficiency of NAW reached 97.4% and 98.5%, respectively. The residual TOC of 31.6 mg·L−1 did not adversely affect the preparation of EMM. The current process offers a feasible route for the concurrent realization of the reductive leaching of Mn and the treatment of toxic wastewater via a simple one-step process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alaoui, K.E.L. Kacemi, K.E.L. Ass, and S. Kitane, Application of box-behnken design to determine the optimal conditions of reductive leaching of MnO2 from manganese mine tailings, Trans. Indian Inst. Met., 56(2015), No. 2, p. 134.

    Google Scholar 

  2. H.F. Su, Y.X. Wen, F. Wang, X.H. Li, and Z.F. Tong, Leaching of pyrolusite using molasses alcohol wastewater as a reductant, Miner. Eng., 22(2009), No. 2, p. 207.

    Article  Google Scholar 

  3. W.Y. Sun, S.J. Su, Q.Y. Wang, and S.L. Ding, Lab-scale circulation process of electrolytic manganese production with low-grade pyrolusite leaching by SO2, Hydrometallurgy, 133(2013), p. 118.

    Article  Google Scholar 

  4. A.A. Baba, L. Ibrahim, F.A. Adekola, R.B. Bale, M.K. Ghosh, A.R. Sheik, S.R. Pradhan, O.S. Ayanda, and I.O. Folorunsho, Hydrometallurgical processing of manganese ores: a review, J. Miner. Mater. Charact. Eng., 2(2014), No. 3, p. 230.

    Google Scholar 

  5. N.A. El-Hussiny, H.H.A. El-Gawad, M.M. Ahmed, and M.E.H. Shalabi, Reduction of low grade egyptian manganese ore by carbon of coke breeze in the briquette form, Multidiscip. Eng. Sci. Technol., 1(2015), No. 1, p. 77.

    Google Scholar 

  6. A. Alaoui, K.E.L. Kacemi, K.E.L. Ass, S. Kitane, and S.E.L. Bouzidi, Box-behnken design application to study leaching of pyrolusite from manganese mining residue using olive mill wastewater as reductant, JOM, 67(2015), No. 5, p. 1086.

    Article  Google Scholar 

  7. M. Trifoni, L. Toro, and F. Vegliò, Reductive leaching of manganiferous ores by glucose and H2SO4: effect of alcohols, Hydrometallurgy, 59(2001), No. 1, p. 1.

    Article  Google Scholar 

  8. G. Furlani, F. Pagnanelli, and L. Toro, Reductive acid leaching of manganese dioxide with glucose: Identification of oxidation derivatives of glucose, Hydrometallurgy, 81(2006), No. 3–4, p. 234.

    Article  Google Scholar 

  9. F. Vegli and L. Toro, Fractional factorial experiments in the development of manganese dioxide leaching by sucrose in sulphuric acid solutions, Hydrometallurgy, 36(1994), No. 2, p. 215.

    Article  Google Scholar 

  10. A.A. Ismail, E.A. Ali, I.A. Ibrahim, and M.S. Ahmed, A comparative study on acid leaching of low grade manganese ore using some industrial wastes as reductants, Can. J. Chem. Eng., 82(2004), No. 6, p. 1296.

    Article  Google Scholar 

  11. F.F. Wu, H. Zhong, S. Wang, and S.F. Lai, Kinetics of reductive leaching of manganese oxide ore using cellulose as reductant, J. Cent. South Univ., 21(2014), No. 5, p. 1763.

    Article  Google Scholar 

  12. H.F. Su, Y.X. Wen, F. Wang, Y.Y. Sun, and Z.F. Tong, Reductive leaching of manganese from low-grade manganese ore in H2SO4 using cane molasses as reductant, Hydrometallurgy, 93(2008), No. 3–4, p. 136.

    Article  Google Scholar 

  13. R.N. Sahoo, P.K. Naik, and S.C. Das, Leaching of manganese from low-grade manganese ore using oxalic acid as reductant in sulphuric acid solution, Hydrometallurgy, 62(2001), No. 3, p.157.

  14. D. Azizi, S.Z. Shafaei, M. Noaparast, and H. Abdollahi, Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and central composite rotatable design, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2295.

    Article  Google Scholar 

  15. C.X.Y. Zhou, T. Li, T.X. Xie, and Y.K. Zhang, Optimization and kinetics of treating cassava bioethanol wastewater with low-grade pyrolusite in sulfuric acid solution, Desalin. Water Treat., 57(2016), No. 36, p. 16822.

    Google Scholar 

  16. A. Ramakrishnan and S.K. Gupta, Effect of hydraulic retention time on the biodegradation of complex phenolic mixture from simulated coal wastewater in hybrid UASB reactors, J. Hazard. Mater, 153(2008), No. 1–2, p. 843.

    Article  Google Scholar 

  17. K. Wang, Q. Ma, S.D. Wang, H. Liu, S.Z. Zhang, W. Bao, K.Q. Zhang, and L.Z. Ling, Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater, Appl. Phys. A, 122(2016), No. 1, p. 40.

    Article  Google Scholar 

  18. B. Yang, J.N. Zuo, P. Li, K.J. Wang, X. Yu, and M.Y. Zhang, Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater, Chem. Eng. J., 287(2016), p. 30.

    Article  Google Scholar 

  19. A.A. Nogueira, J.P. Bassin, A.C. Cerqueira, and M. Dezotti, Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse, Environ. Sci. Pollut. Res. Int., 23(2016), No. 10, p. 9730.

    Article  Google Scholar 

  20. P. Tanvanit, J. Anotai, C.C. Su, and M.C. Lu, Treatment of explosive-contaminated wastewater through the Fenton process, Desalin. Water Treat., 51(2013), No. 13–15, p. 2820.

    Article  Google Scholar 

  21. E.N. Ribeiro, F.T. Da Silva, and T.C.B. De Paiva, Ecotoxicological evaluation of waste water from nitrocellulose production, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 48(2013), No. 2, p. 197.

    Article  Google Scholar 

  22. B.G. Fullington, J.K. Park, and B.J. Kim, Waste minimization and nitrocellulose fines removal at an ammunition plant, Water Sci. Technol., 34(1996), No. 10, p. 121.

    Article  Google Scholar 

  23. C.T.Y. Cheng, R.Y. Peng, S.M. Haile, Y.Y. Chen, M.Y. Chen, D.T. Jhang, and H.J. Fan, Nutrient recovery from nitrocellulose manufacturing wastewater, Sustain. Environ. Res., 23(2013), No. 1, p. 33.

    Google Scholar 

  24. S.D. Ma, R.X. Zhang, and L.B. Zhao, Preliminary discussion on the current status and developing tendency of cellulose nitrate in china, Shanghai Coat., 10(2007), p. 48.

    Google Scholar 

  25. D. Grasso, J.C. Carrington, P. Chheda, and B. Kim, Nitrocellulose particle stability: Coagulation thermodynamics, Water Res., 29(1995), No. 1, p. 49.

    Article  Google Scholar 

  26. H.L. Liu, Waste minimization at a nitrocellulose manufacturing facility, Int. J. Environ. Stud., 60(2003), No. 4, p. 353.

    Article  Google Scholar 

  27. American Public Health Association, American Water Works Association, and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association: NW, Washington DC, 1998, p. 461.

  28. K.A.C.C. Taylor, A modification of the phenol/sulfuric acid assay for total carbohydrates giving more comparable absorbances, Appl. Biochem. Biotechnol., 53(1995), No. 3, p. 207.

    Article  Google Scholar 

  29. M. Ma, Z.H. Tong, Z.J. Wang, D.C. Yang, and W.J. Zhu, Application of new type of fresh water luminescent bacterium (Vibrio qinghaiensis sp.-Q67) for toxicity bioassay, Acta Scien. Circum., 18(1998), No. 1, p. 86.

    Google Scholar 

  30. B.A. Lure, Z.T. Valishina, and B.S. Svetlov, Kinetics and mechanism of the chemical transformation of nitrocellulose under the action of aqueous sulphuric acid solutions, Polym. Sci. USSR, 33(1991), No. 1, p. 99.

    Article  Google Scholar 

  31. G. El-Diwani, N.N. El-Ibiari, and S.I. Hawash, Treatment of hazardous wastewater contaminated by nitrocellulose, J. Hazard. Mater., 167(2009), No. 1–3, p. 830.

    Article  Google Scholar 

  32. H.F. Su, H.K. Liu, F. Wang, X.Y. Lv, and Y.X. Wen, Kinetics of reductive leaching of low-grade pyrolusite with molasses alcohol wastewater in H2SO4, Chin. J. Chem. Eng., 18(2010), No. 5, p. 730.

    Article  Google Scholar 

  33. Y.J. Lv, J. Su, Y.X. Wen, H.F. Su, K.D. Yang, and X.Y. Lv, Leaching kinetics of pyrolusite by macromolecular melanoidins of molasses alcohol wastewater in H2SO4, Procedia Eng., 18(2011), p. 107.

    Article  Google Scholar 

  34. Y.T. Zhang, J.H. Cai, Z.G. Dan, Y. Tian, N. Duan, and B.P. Xin, Simultaneous oxidative degradation of toxic acid wastewater from production of nitrocellulose and release of Mn2+ from low-grade MnO2 ore as oxidant, J. Chem. Technol. Biotechnol., 92(2017), No. 7, p. 1638.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Xiangshun Jing for kind supply of the NAW and this work was financially supported by the National Natural Science Foundation of China (No. 21277012), the Nature Scientific Research Foundation of Shaanxi Provincial Education Office of China (No. 17JK0864), and the Scientific Research Foundation for PhD of Yan’an University (No. YDBK2018-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-ping Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yt., Dan, Zg., Duan, N. et al. Reductive recovery of manganese from low-grade manganese dioxide ore using toxic nitrocellulose acid wastewater as reductant. Int J Miner Metall Mater 25, 990–999 (2018). https://doi.org/10.1007/s12613-018-1649-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1649-9

Keywords

Navigation