Skip to main content
Log in

Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The wear resistances of austempered ductile iron (ADI) were improved through introduction of a new phase (carbide) into the matrix by addition of chromium. In the present investigation, low-carbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents carbon- equivalent) with 2.42% chromium was selected. LCEDI was austenitized at two different temperatures (900 and 975°C) and soaked for 1 h and then quenched in a salt bath at 325°C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carried out on a pin-on-disk-type machine. The effect of austenization temperature on the wear resistance, impact strength, and the microstructure was evaluated. A structure–property correlation based on the observations is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tanaka and H. Kage, Development and application of austempered spheroidal graphite cast iron, Mater. Trans. JIM, 33(1992), 6, p. 543.

    Article  Google Scholar 

  2. Y.S. Lerner and G.R. Kingsbury, Wear resistance properties of austempered ductile iron, J. Mater. Eng. Perform., 7(1998), 1, p. 48.

    Article  Google Scholar 

  3. P. Shanmugam, P.P. Rao, K.R. Udupa, and N. Venkataraman, Effect of microstructure on the fatigue strength of an austempered ductile iron, J. Mater. Sci., 29(1994), 18, p. 4933.

    Article  Google Scholar 

  4. L. Bartosiewicz, A.R. Krause, F.A. Alberts, I. Singh, and S.K. Putatunda, Influence of microstructure on high cycle fatigue behavior of austempered ductile cast iron, Mater. Charact., 30(1993), 4, p. 221.

    Article  Google Scholar 

  5. J.L. Garin and R.L. Mannheim, Strain-induced martensite in ADI alloys, J. Mater. Process. Technol., 143-144(2003), p. 347.

    Article  Google Scholar 

  6. S. Balos, I. Radisavljevic, D. Rajnovic, M. Dramicanin, S. Tabakovic, O. Eric-Cekic, and L. Sidjanin, Geometry, mechanical and ballistic properties of ADI material perforated plates, Mater. Des., 83(2015), p. 66.

    Article  Google Scholar 

  7. R.C. Dommarco, K.J. Kozaczek, P.C. Bastias, G.T. Hahn, and C.A. Rubin, Residual stresses and retained austenite evolution in SAE 52100 steel under non-ideal rolling contact loading, Wear, 257(2004), 11, p. 1081.

    Article  Google Scholar 

  8. J. Zimba, D.J. Simbi, and E. Navara, Austempered ductile iron: an alternative material for earth moving components, Cem. Concr. Compos., 25(2003), 6, p. 643.

    Article  Google Scholar 

  9. L.Y. Fang and C.R. Loper Jr, Feasibility of the production of a low-cabon equivalent spheroidal graphite cast iron: a review of the literature, Am. Foundry Soc. Trans., 1991, p. 313.

    Google Scholar 

  10. A. Likhite, D.R. Peshwe, and S.U. Pathak, Effect of graphite morphology on modulus of elasticity of low carbon equivalent ductile iron, Trans. Indian Inst. Met., 61(2008), 6, p. 497.

    Article  Google Scholar 

  11. P. Parhad, S. Umale, A. Likhite, and J. Bhatt, Characterization of inoculated low carbon equivalent iron at lower austempering temperature, Trans. Indian Inst. Met., 65(2012), 5, p. 449.

    Article  Google Scholar 

  12. A. Likhite, D.R. Peshwe, and S.U. Pathak, Development of austempered inoculated low carbon equivalent irons, Indian Foundry J., 57(2011), 6, p. 23.

    Google Scholar 

  13. S. Umale, A. Likhite, D.R. Peshwe, and S.U. Pathak, Wear characteristics of low carbon equivalent austempered ductile iron (ADI), Indian Foundry J., 60(2014), 9, p. 28.

    Google Scholar 

  14. K.L. Hayrynen and K.R. Brandenberg, Carbidic austempered ductile iron (CADI)—the new wear material, Am. Foundry Soc. Trans., 111(2003), p. 845.

    Google Scholar 

  15. J.H. Liu, G.L. Li, X.B. Zhao, X.Y. Hao, and J.J. Zhang, Effect of austempering temperature on microstructure and properties of carbidic austempered ductile iron, Adv. Mater. Res., 284-286(2011), p. 1085.

    Article  Google Scholar 

  16. S. Laino, J.A. Sikora, and R.C. Dommarco, Development of wear resistant carbidic austempered ductile iron (CADI), Wear, 265(2008), No. 1–2, p. 1.

    Article  Google Scholar 

  17. L. Bartosiewicz, I. Singh, F.A. Alberts, A.R. Krause, and S.K. Putatunda, The influence of chromium on mechanical properties of austempered ductile cast iron, J. Mater. Eng. Perform., 4(1995), 1, p. 90.

    Article  Google Scholar 

  18. C. Suryanarayana and M. Grant Norton, X-ray Diffraction: A Practical Approach, Plenum Press, New York and London, 1998, p. 153, 223.

    Chapter  Google Scholar 

  19. C.S. Roberts, Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite, JOM, 5(1953), 2, p. 203.

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-Ray Diffraction, Addison- Wesley, Reading, USA, 1978, p.102.

    Google Scholar 

  21. P. Parhad, A. Likhite, J. Bhatt, and D. Peshwe, The effect of cutting speed and depth of cut on surface roughness during machining of austempered ductile iron, Trans. Indian Inst. Met., 68(2015), 1, p. 99.

    Article  Google Scholar 

  22. H.O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, William Andrew, 1996, p. 139.

    Google Scholar 

  23. T.N. Rouns and K.B. Rundman, Constitution of austempered ductile iron and the kinetics of austempering, Am. Foundry Soc. Trans., 95(1987), p. 851.

    Google Scholar 

  24. R. Elliott, Cast Iron Technology, Butterworth-Heinemann, Oxford, 1988, p. 142.

    Google Scholar 

  25. C.H. Hsu and S.C. Lee, High strength high toughness compacted graphite cast iron, Mater. Sci. Technol., 11(1995), p. 765.

    Article  Google Scholar 

  26. U. Batra, S. Ray, and S.R. Prabhakar, Impact properties of copper-alloyed and nickel-copper alloyed ADI, J. Mater. Eng. Perform., 16(2007), 4, p. 485.

    Article  Google Scholar 

  27. U.R. Kumari and P.P. Rao, Study of wear behaviour of austempered ductile iron, J. Mater. Sci., 44(2009), p. 1082.

    Article  Google Scholar 

  28. J.H. Yang and S.K. Putatunda, Effect of microstructure on abrasion wear behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process, Mater. Sci. Eng, A, 406(2005), No. 1–2, p. 217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinayak Dakre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakre, V., Peshwe, D.R., Pathak, S.U. et al. Effect of austenitization temperature on microstructure and mechanical properties of low-carbon-equivalent carbidic austempered ductile iron. Int J Miner Metall Mater 25, 770–778 (2018). https://doi.org/10.1007/s12613-018-1625-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1625-4

Keywords

Navigation