Skip to main content
Log in

Microstructure Evolution and Wear Resistance of Cu-Bearing Carbidic Austempered Ductile Iron after Austempering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influence of the austempering process on microstructure evolution, mechanical properties, wear resistance, and corrosion resistance of Cu-bearing carbidic austempered ductile iron (CADI) was investigated. The results show that with an increase in the austempering temperature, the amount of acicular ferrite decreases, the volume fraction and carbon content of retained austenite increase gradually, the hardness and tensile strength decrease, and the impact toughness and corrosion resistance increase. Wear tests show that as the austempering temperature increases, the wear resistance of Cu-bearing CADI is improved and decreases when the temperature exceeds 300 °C. Comparing to the conventional single-step austempering process, two-step austempering process (namely added pre-quenching at 260 °C) significantly improves the wear resistance of Cu-bearing CADI by more than 16% without compromising toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. I.C.H. Hughes, Austempered Ductile Irons-their Properties and Significance, Mater. Des., 1985, 6(3), p 124–126. https://doi.org/10.1016/0261-3069(85)90055-X

    Article  CAS  Google Scholar 

  2. M. Kuna, M. Springmann, K. Mädler, P. Hübner, and G. Pusch, Fracture Mechanics Based Design of a Railway Wheel Made of Austempered Ductile Iron, Eng. Fract. Mech., 2005, 72(2), p 241–253. https://doi.org/10.1016/j.engfracmech.2003.10.007

    Article  Google Scholar 

  3. A.G. Fuller, Austempered Ductile Irons-Present Applications, Mater. Des., 1985, 6(3), p 127–130. https://doi.org/10.1016/0261-3069(85)90056-1

    Article  Google Scholar 

  4. J. Lefevre and K.L. Hayrynen, Austempered Materials for Powertrain Applications, J. Mater. Eng. Perform., 2013, 22(7), p 1914–1922. https://doi.org/10.1007/s11665-013-0557-4

    Article  CAS  Google Scholar 

  5. T. Takahashi, T. Abe, and S. Tada, Effect of Bainite Transformation and Retained Austenite on Mechanical Properties of Austempered Spheroidal Graphite Cast Steel, Metall. Mater. Trans. A, 1996, 27(6), p 1589–1598. https://doi.org/10.1007/bf02649817

    Article  Google Scholar 

  6. G. Artola, I. Gallastegi, J. Izaga, M. Barreña, and A. Rimmer, Austempered Ductile Iron (ADI) Alternative Material for High-Performance Applications, Int. J. Metalcast., 2017, 11(1), p 131–135. https://doi.org/10.1007/s40962-016-0085-8

    Article  CAS  Google Scholar 

  7. W. Shizhong and X. Liujie, Review on Research Progress of Steel and Iron Wear-Resistant Material, Acta Metall. Sin., 2019, https://doi.org/10.11900/0412.1961.2019.00370

    Article  Google Scholar 

  8. B. Stokes, N. Gao, and P.A.S. Reed, Effects of Graphite Nodules on Crack Growth Behaviour of Austempered Ductile Iron, Mater. Sci. Eng., A, 2007, 445–446, p 374–385. https://doi.org/10.1016/j.msea.2006.09.058

    Article  CAS  Google Scholar 

  9. V. Dakre, D.R. Peshwe, S.U. Pathak, and A. Likhite, Effect of Austenitization Temperature on Microstructure and Mechanical Properties of Low-Carbon-Equivalent Austempered Carbidic Ductile Iron, Int. J. Miner. Metall. Mater., 2018, 25(7), p 770–778. https://doi.org/10.1007/s12613-018-1625-4

    Article  CAS  Google Scholar 

  10. Y.C. Peng, H.J. Jin, J.H. Liu, and G.L. Li, Influence of Cooling Rate on the Microstructure and Properties of a New Wear Resistant Carbidic Austempered Ductile Iron (CADI), Mater. Charact., 2012, 72, p 53–58. https://doi.org/10.1016/j.matchar.2012.07.006

    Article  CAS  Google Scholar 

  11. S. Sebastián, J. Sikora, and R.C. Dommarco, Influence of Chemical Composition and Solidification Rate on the Abrasion and Impact Properties of CADI, ISIJ Int., 2009, 49(8), p 1239–1245. https://doi.org/10.2355/isijinternational.49.1239

    Article  Google Scholar 

  12. O. Eric, D. Rajnovic, S. Zec, L. Sidjanin, and M.T. Jovanović, Microstructure and Fracture of Alloyed Austempered Ductile Iron, Mater. Charact., 2006, 57(4–5), p 211–217. https://doi.org/10.1016/j.matchar.2006.01.014

    Article  CAS  Google Scholar 

  13. S.K. Putatunda, Development of Austempered Ductile Cast Iron (ADI) with Simultaneous High Yield Strength and Fracture Toughness by a Novel Two-Step Austempering Process, Mater. Sci. Eng., A, 2001, 315(1), p 70–80. https://doi.org/10.1016/S0921-5093(01)01210-2

    Article  Google Scholar 

  14. H.Q. Cheng, H.G. Fu, S.Q. Ma, J. Lin, and Y.P. Lei, Effects of Austenitizing Process on Microstructures and Properties of Carbidic Austempered Ductile Iron, Mater. Res. Express, 2019, 6, p 016522. https://doi.org/10.1088/2053-1591/aae44c

    Article  CAS  Google Scholar 

  15. A. Hegde and S. Sharma, Comparison of Machinability of Manganese Alloyed Austempered Ductile Iron Produced Using Conventional and Two Step Austempering Processes, Mater. Res. Expres, 2018, https://doi.org/10.1088/2053-1591/aac254

    Article  Google Scholar 

  16. J. Yang and S.K. Putatunda, Improvement in Strength and Toughness of Austempered Ductile Cast Iron by a Novel Two-Step Austempering Process, Mater. Des., 2004, 25(3), p 219–230. https://doi.org/10.1016/j.matdes.2003.09.021

    Article  CAS  Google Scholar 

  17. A.H. Elsayed, M.M. Megahed, A.A. Sadek, and K.M. Abouelela, Fracture Toughness Characterization of Austempered Ductile Iron Produced using Both Conventional and Two-Step Austempering Processes, Mater. Des., 2009, 30(6), p 1866–1877. https://doi.org/10.1016/j.matdes.2008.09.013

    Article  CAS  Google Scholar 

  18. V. Dakre, D.R. Peshwe, S.U. Pathak, and A. Likhite, Mechanical Characterization of Austempered Ductile Iron Obtained by Two Step Austempering Process, Trans. Indian Inst. Met., 2017, 70(9), p 2381–2387. https://doi.org/10.1007/s12666-017-1099-5

    Article  CAS  Google Scholar 

  19. C. Han, Y.F. Sun, Y. Wu, and Y.H. Ma, Effects of Vanadium and Austempering Temperature on Microstructure and Properties of CADI, Metallogr. Microstruct. Anal., 2015, 4(3), p 135–145. https://doi.org/10.1007/s13632-015-0197-1

    Article  CAS  Google Scholar 

  20. U. Batra, S. Ray, and S.R. Prabhakar, Austempering and Austempered Ductile Iron Microstructure in Copper Alloyed Ductile Iron, J. Mater. Eng. Perform., 2003, 12(4), p 426–429. https://doi.org/10.1361/105994903770342962

    Article  CAS  Google Scholar 

  21. S.P. Mahadik, M.S. Harne, and V.B. Raka, Study on Effect of Austempering Temperature and Time on the Corrosion Resistance of Carbidic Austempered Ductile Iron (CADI) Material, Int. J. Sci. Res. Dev., 2017, 13(1), p 234–240. https://doi.org/10.29070/JAST

    Article  Google Scholar 

  22. R. Nan, H.G. Fu, S.Q. Ma, P.H. Yang, J. Lin, X.Y. Guo, and Y.P. Lei, Microstructure and Properties of Cu-Bearing Carbidic Austempered Ductile Iron, Int. J. Mater. Res., 2019, 110(7), p 621–635. https://doi.org/10.3139/146.111787

    Article  CAS  Google Scholar 

  23. R. Nan, H.G. Fu, P.H. Yang, J. Lin, and Y.P. Lei, Effect of Austenitizing Temperature on the Microstructure Evolution and Properties of Cu-Bearing CADI, Mater. Test., 2019, 61(9), p 865–874. https://doi.org/10.3139/120.111394

    Article  CAS  Google Scholar 

  24. P.H. Yang, H.G. Fu, R. Nan, X.Y. Guo, J. Lin, and Y.P. Lei, Effect of Ti Modification on Microstructures and Properties of Carbidic Austempered Ductile Iron, J. Mater. Eng. Perform., 2019, 28(4), p 2335–2347. https://doi.org/10.1007/s11665-019-03986-4

    Article  CAS  Google Scholar 

  25. P.H. Yang, H.G. Fu, J. Lin, H.Q. Cheng, and Y.P. Lei, Experimental and Ab Initio Study of the Influence of a Compound Modifier on Carbidic Ductile Iron, Metall. Res. Technol., 2019, https://doi.org/10.1051/metal/2018124

    Article  Google Scholar 

  26. P.H. Yang, H.G. Fu, X.W. Zhao, J. Lin, and Y.P. Lei, Wear Behavior of CADI, Obtained at Different Austenitizing Temperatures, Tribol. Int., 2019, 140, p 105876. https://doi.org/10.1016/j.triboint.2019.105876

    Article  CAS  Google Scholar 

  27. X. Sun, Y. Wang, D.Y. Li, and G. Wang, Modification of Carbidic Austempered Ductile Iron with Nano Ceria for Improved Mechanical Properties and Abrasive Wear Resistance, Wear, 2013, 301(1–2), p 116–121. https://doi.org/10.1016/j.wear.2012.12.018

    Article  CAS  Google Scholar 

  28. Y.C. Peng, H.J. Jin, J.H. Liu, and G.L. Li, Effect of Boron on the Microstructure and Mechanical Properties of Carbidic Austempered Ductile Iron, Mater. Sci. Eng., A, 2011, 529, p 321–325. https://doi.org/10.1016/j.msea.2011.09.034

    Article  CAS  Google Scholar 

  29. C.H. Hsu and M.L. Chen, Corrosion Behavior of Nickel Alloyed and Austempered Ductile Irons in 3.5% Sodium Chloride, Corros. Sci., 2010, 52(9), p 2945–2949. https://doi.org/10.1016/j.corsci.2010.05.006

    Article  CAS  Google Scholar 

  30. M.L. Ding, B.J. Yu, L. Sun, and X.J. Yu, Effects of Heat Treatment on Microstructure and Mechanical Properties of High Ni-Cr Centrifugal Composite Ductile Cast Iron Rolls, Heat Treat. Met., 2014, 39(11), p 89–92. https://doi.org/10.13251/j.issn.0254-6051.2014.11.021

    Article  CAS  Google Scholar 

  31. J. Yang and S.K. Putatunda, Effect of Microstructure on Abrasion Wear Behavior of Austempered Ductile Cast Iron (ADI) Processed by a Novel Two-Step Austempering Process, Mater. Sci. Eng., A, 2005, 406(1–2), p 217–228. https://doi.org/10.1016/j.msea.2005.06.036

    Article  CAS  Google Scholar 

  32. P.P. Rao and S.K. Putatunda, Investigations on the Fracture Toughness of Austempered Ductile Irons Austenitised at Different Temperatures, Mater. Sci. Eng., A, 2003, 349, p 136–149. https://doi.org/10.1016/s0921-5093(02)00633-0

    Article  Google Scholar 

  33. J.H. Liu, G.L. Li, X.B. Zhao, X.Y. Hao, and J.J. Zhang, Effect of Austempering Temperature on Microstructure and Properties of Carbide Austempered Ductile Iron, Adv. Mater. Res., 2011, 284–286, p 1085–1088. https://doi.org/10.4028/www.scientific.net/amr.284-286.1085

    Article  Google Scholar 

  34. S.K. Putatunda and P.K. Gadicherla, Effect of Austempering Time on Mechanical Properties of a Low Manganese Austempered Ductile Iron, J. Mater. Eng. Perform., 2000, 9(2), p 193–203. https://doi.org/10.1361/105994900770346150

    Article  CAS  Google Scholar 

  35. K.S. Ravishankar, P.P. Rao, and K.R. Udupa, Improvement in Fracture Toughness of Austempered Ductile Iron by Two-Step Austempering Process, Int. J. Cast Met. Res., 2010, 23(6), p 330–343. https://doi.org/10.1179/136404610X12693537270091

    Article  CAS  Google Scholar 

  36. C.H. Hsu and K.T. Lin, Effects of Copper and Austempering on Corrosion Behavior of Ductile Iron in 3.5 Pct Sodium Chloride, Metall. Mater., 2014, 45(3), p 1517–1523. https://doi.org/10.1007/s11661-013-2059-2

    Article  CAS  Google Scholar 

  37. P.H. Yang, H.G. Fu, X.W. Zhao, J. Lin, and Y.P. Lei, Wear Behavior of CADI, Obtained at Different Austenitizing Temperatures, Tribol. Int., 2019, https://doi.org/10.1016/j.triboint.2019.105876

    Article  Google Scholar 

  38. X.H. Sun, X.B. Zou, G.J. Yin, K. Jiang, and Y.J. Tang, Electrochemical and Microscopic Investigation on Passive Behavior of Ductile Iron in Simulated Cement-Mortar Pore Solution, Constr. Build. Mater., 2017, 150, p 703–713. https://doi.org/10.1016/j.conbuildmat.2017.06.042

    Article  CAS  Google Scholar 

  39. J. Yang and S.K. Putatunda, Influence of a Novel Two-Step Austempering Process on the Strain-Hardening Behavior of Austempered Ductile Cast Iron (ADI), Mater. Sci. Eng., A, 2004, 382(1–2), p 265–279. https://doi.org/10.1016/j.msea.2004.04.076

    Article  CAS  Google Scholar 

  40. S.K. Putatunda, S. Unni, and G. Lawes, Mechanical and Magnetic Properties of a New Austenitic Structural Steel, Mater. Sci. Eng., A, 2005, 406(1–2), p 254–260. https://doi.org/10.1016/j.msea.2005.06.056

    Article  CAS  Google Scholar 

  41. C.D. Wagner, W.M. Riggs, and L.E. Davi. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical Electronic Division, Eden Prairle, MN 1979. https://doi.org/10.1002/sia.740030412

  42. E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, and S.N. Kerisita, XPS Determination of Mn Oxidation States in Mn (Hydr)oxides, Appl. Surf. Sci., 2016, 336(15), p 475–485. https://doi.org/10.1016/j.apsusc.2015.12.159

    Article  CAS  Google Scholar 

  43. S. Balos, D. Rajnovic, M. Dramicanin, D. Labus, O. Eric-Cekic, J. Grbovic-Novakovic, and L. Sidjanin, Abrasive Wear Behaviour of ADI, Material with Various Retained Austenite Content, Int. J. Cast Met. Res., 2016, 29(4), p 187–193. https://doi.org/10.1080/13640461.2015.1125982

    Article  CAS  Google Scholar 

  44. S.K. Putatunda, S. Kesani, R. Tackett, and G. Lawes, Development of Austenite Free ADI (Austempered Ductile Cast Iron), Mater. Sci. Eng., A, 2006, 435(11), p 112–122. https://doi.org/10.1016/j.msea.2006.07.051

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support for this work from National Natural Science Foundation of China under Grant (51775006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanguang Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, R., Fu, H., Yang, P. et al. Microstructure Evolution and Wear Resistance of Cu-Bearing Carbidic Austempered Ductile Iron after Austempering. J. of Materi Eng and Perform 29, 2440–2459 (2020). https://doi.org/10.1007/s11665-020-04788-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04788-9

Keywords

Navigation