Skip to main content
Log in

Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150°C and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050°C. However, the gentle static softening at 1100 and 1150°C was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Chen, K.K. Li, Y.C. Lin, and W.Q. Yuan, An improved kinetics model to describe dynamic recrystallization behavior under inconstant deformation conditions, J. Mater. Res., 31(2016), No. 19, p. 2994.

    Article  Google Scholar 

  2. M.Y. Li, Y.Z. Liu, T. Zhu, and Y. Wang, Microstructure homogenization control of Nb-bearing X65 pipeline steel by the CSP process, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 35.

    Article  Google Scholar 

  3. A. Momeni, G.R. Ebrahimi, M. Jahazi, and P. Bocher, Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size, J. Alloys Compd., 587(2014), p. 199.

    Article  Google Scholar 

  4. F.J. Humphrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Oxford, 2004, p. 255.

    Google Scholar 

  5. D. Ponge and G. Gottstein, Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta Mater., 46(1998), No. 1, p. 69.

    Article  Google Scholar 

  6. G. Gottstein, E. Brunger, and D. Ponge, Advances in Hot Deformation Textures and Microstructures, TMS, Pennsylvania, 1995, p. 477.

    Google Scholar 

  7. A. Momeni, S.M. Abbasi, M. Morakabati, H. Badri, and X. Wang, Dynamic recrystallization behavior and constitutive analysis of Incoloy 901 under hot working condition, Mater. Sci. Eng. A, 615(2014), p. 51

    Article  Google Scholar 

  8. M. Ueki, S. Horie, and T. Nakamura, Factors affecting dynamic recrystallization of metals and alloys, Mater. Sci. Technol., 3(1987), No. 5, p. 329.

    Article  Google Scholar 

  9. T. Sakai and J.J. Jonas, Dynamic recrystallization: Mechanical and microstructural considerations, Acta Metall., 32(1984), No. 2, p. 189.

    Article  Google Scholar 

  10. A. Belyakov, H. Miura, and T. Sakai, Dynamic recrystallization in ultra fine-grained 304 stainless steel, Scripta Metall., 43(2000), No. 1, p. 21.

    Article  Google Scholar 

  11. D.G. He, Y.C. Lin, M.S. Chen, and L. Li, Kinetics equations and microstructural evolution during metadynamic recrystallization in a nickel-based superalloy with δ phase, J. Alloys Compd., 690(2017), p. 971.

    Article  Google Scholar 

  12. H.J. Mao, R. Zhang, L. Hua, and F. Yin, Study of static recrystallization behaviors of GCr15 steel under two-pass hot compression deformation, J. Mater. Eng. Perform., 24(2015), No. 2, p. 930.

    Article  Google Scholar 

  13. B. Ma, Y. Peng, Y.F. Liu, and B. Jia, Modeling of metadynamic recrystallization kinetics after hot deformation of low-alloy steel Q345B, J. Cent. South Univ. Technol., 17(2010), No. 5, p. 911.

    Article  Google Scholar 

  14. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization, Metall. Mater. Trans. A, 39(2008), No. 6, p. 1359.

    Article  Google Scholar 

  15. A.R. Morgridge, Metadynamic recrystallization in C steels, Bull. Mater. Sci., 25(2002), No. 4, p. 291.

    Article  Google Scholar 

  16. P.D. Hodgson, Mathematical Modelling of Recrystallization Processes During the Hot Rolling of Steel [Dissertation], University of Queensland, Brisbane, 1993.

    Google Scholar 

  17. C. Roucoules, P.D. Hodgson, S. Yue, and J.J. Jonas, Softening and microstructural change following the dynamic recrystallization of austenite, Metall. Mater. Trans. A, 25(1994), No. 2, p. 389.

    Article  Google Scholar 

  18. W.P. Sun and E.B. Hawbolt, Comparison between static and metadynamic recrystallization—an application to the hot rolling of steels, ISIJ Int., 37(1997), No. 10, p. 1000.

    Article  Google Scholar 

  19. A.M. Elwazri, P. Wanjara, and S. Yue, Metadynamic and static recrystallization of hypereutectoid steel, ISIJ Int., 43(2003), No. 7, p. 1080.

    Article  Google Scholar 

  20. L.P. Karjalainen, T.M. Maccagno, and J.J. Jonas, Softening and flow stress behaviour of Nb microalloyed steels during hot rolling simulation, ISIJ Int., 35(1995), No. 12, p. 1523.

    Article  Google Scholar 

  21. J.J. Jonas, The hot strip mill as an experimental tool, ISIJ Int., 40(2000), No. 8, p. 731.

    Article  Google Scholar 

  22. B. Derby and M.F. Ashby, On dynamic recrystallization, Scripta Metall., 21(1987), p. 879.

    Article  Google Scholar 

  23. A. Dehghan-Manshadi, H. Beladi, and M.R. Barnett, Recrystallization in 304 austenitic stainless steel, Mater. Sci. Forum, 467-470(2004), p. 1163.

    Article  Google Scholar 

  24. A. Dehghan Manshadi, The Evolution of Recrystallization During and Following Hot Deformation [Dissertation], Deakin University Geelong, Victoria, 2007.

    Google Scholar 

  25. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Processing maps for hot working of commercial grade wrought stainless steel type AISI 304, Mater. Sci. Eng. A, 177(1994), No. 1-2, p. 143.

    Article  Google Scholar 

  26. I. Salvatori, T. Inoue, and K. Nagai, Ultrafine grain structure through dynamic recrystallization for Type 304 stainless steel, ISIJ Int., 42(2002), No. 7, p. 744.

    Article  Google Scholar 

  27. E.I. Poliak and J.J. Jonas, A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization, Acta Mater., 44(1996), No. 1, p. 127.

    Article  Google Scholar 

  28. G.R. Ebrahimi, H. Keshmiri, A.R. Maldad, and A. Momeni, Dynamic recrystallization behavior of 13%Cr martensitic stainless steel under hot working condition, J. Mater. Sci. Technol., 28(2012), No. 5, p. 467.

    Article  Google Scholar 

  29. A. Momeni, S.M. Abbasi, and A. Shokuhfar, Dynamic and metadynamic recrystallization of a martensitic precipitation hardenable stainless steel, Can. Metall. Q., 46(2007), No. 2, p. 189.

    Article  Google Scholar 

  30. A. Najafizadeh, J.J. Jonas, G.R. Stewart, and E.I. Poliak, The strain dependence of postdynamic recrystallization in 304 H stainless steel, Metall. Mater. Trans. A, 37(2006), No. 6, p. 1899.

    Article  Google Scholar 

  31. J. Liu, Y.G. Liu, H. Lin, and M.Q. Li, The metadynamic recrystallization in the two-stage isothermal compression of 300M steel, Mater. Sci. Eng. A, 565(2013), p. 126.

    Article  Google Scholar 

  32. X.W. Duan, M.M. Chen, H.Q. Chen, and J.S. Liu, Study on static recrystallization softening behavior of 316LN steel, [in] Third International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2011, Washington, p. 522.

    Google Scholar 

  33. J. Liu, G.W. Fan, P.D. Han, J.F. Yang, J.S. Liu, D.S. Ge, and G.J. Qiao, Study on the static recrystallization behavior of thermal deformation of austenitic stainless steel for nuclear power, Mater. Sci. Forum, 658(2010), p. 165.

    Article  Google Scholar 

  34. H.Y. Wu, L.X. Du, Z.R. Ai, and X.H. Liu, Static recrystallization and precipitation behavior of a weathering steel microalloyed with vanadium, J. Mater. Sci. Technol., 29(2013), No. 12, p. 1197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, N., Ebrahimi, G.R., Momeni, A. et al. Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process. Int J Miner Metall Mater 25, 181–189 (2018). https://doi.org/10.1007/s12613-018-1561-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1561-3

Keywords

Navigation