Skip to main content
Log in

Mechanical properties and constitutive behaviors of as-cast 7050 aluminum alloy from room temperature to above the solidus temperature

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress–strain behaviors at higher temperatures, whereas the influence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter f GBWL, i.e., the fraction of grain boundaries covered by liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. X. Shu, J. C. Liu, L. G. Hou, H. Cui, J. T. Liu, and J. S. Zhang, Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization, Int. J. Miner. Metall. Mater., 21 (2014), No. 12, p. 1215.

    Article  Google Scholar 

  2. X. J. Wang, J. Z. Cui, Y. B. Zuo, Z. H. Zhao, and H. T. Zhang, Effects of low-frequency electromagnetic field on the surface quality of 7050 aluminum alloy ingots during the hot-top casting process, Int. J. Miner. Metall. Mater., 18 (2011), No. 2, p. 165.

    Article  Google Scholar 

  3. Z. H. Zhao, Z. Xu, G. S. Wang, Q. F. Zhu, and J. Z. Cui, As-cast structure of DC casting 7075 aluminum alloy obtained under dual-frequency electromagnetic field, Int. J. Miner. Metall. Mater., 21 (2014), No. 2, p. 150.

    Article  Google Scholar 

  4. J.-M. Drezet and M. Rappaz, Modeling of ingot distortions during direct chill casting of aluminum alloys, Metall. Mater. Trans. A, 27A(1996), p. 3214.

    Article  Google Scholar 

  5. M. Lalpoor, D. G. Eskin, and L. Katgerman, Cold-cracking assessment in AA7050 billets during direct-chill casting by thermomechanical simulation of residual thermal stresses and application of fracture mechanics, Metall. Mater. Trans. A, 40 (2009), No. 13, p. 3304.

    Article  Google Scholar 

  6. M. M’hamdi, A. Mo, and H. G. Fjær, TearSim: A two-phase model addressing hot tearing formation during aluminum direct chill casting, Metall. Mater. Trans. A, 37 (2006), p. 3069.

    Article  Google Scholar 

  7. A. J. Williams, T. N. Croft, and M. Cross, Modeling of ingot development during the start-up phase of direct chill casting, Metall. Mater. Trans. B, 34 (2003), No. 5, p. 727.

    Article  Google Scholar 

  8. W. H. Suyitno, W. H. Kool, and L. Katgerman, Finite element method simulation of mushy zone behavior during direct-chill casting of an Al-4.5 pct Cu alloy, Metall. Mater. Trans. A, 35 (2004), No. 9, p. 2917.

    Article  Google Scholar 

  9. J. Sengupta, S. L. Cockcroft, D. M. Maijer, M. A. Wells, and A. Larouche, On the development of a three-dimensional transient thermal model to predict ingot cooling behavior during the start-up phase of the direct chill-casting process for an AA5182 aluminum alloy ingot, Metall. Mater. Trans. B, 35 (2004), No. 3, p. 523.

    Article  Google Scholar 

  10. F. D’Elia, C. Ravindran, D. Sediako, K. U. Kainer, and N. Hort, Hot tearing mechanisms of B206 aluminum-copper alloy, Mater. Des., 64 (2014), p. 44.

    Article  Google Scholar 

  11. J. F. Song, Z. Wang, Y. D. Huang, A. Srinivasan, F. Beckmann, K. U. Kainer, and N. Hort, Effect of Zn addition on hot tearing behaviour of Mg-0.5Ca-xZn alloys, Mater. Des., 87 (2015), p. 157.

    Google Scholar 

  12. M. Lalpoor, D. G. Eskin, D. Ruvalcaba, H. G. Fjær, A. T. Cate, N. Ontijt, and L. Katgerman, Cold cracking in DC-cast high strength aluminum alloy ingots: an intrinsic problem intensified by casting process parameters, Mater. Sci. Eng. A, 528 (2011), No. 6, p. 2831.

    Article  Google Scholar 

  13. A. B. Phillion, S. Thompson, S. L. Cockcroft, and M. A. Wells, Tensile properties of as-cast aluminum alloys AA3104, AA6111 and CA31218 at above solidus temperatures, Mater. Sci. Eng. A, 497 (2008), No. 1-2, p. 388.

    Article  Google Scholar 

  14. K. M. Chang and B. Kang, Cracking control in DC casting of high-strength aluminum alloys, J. Chin Inst. Eng., 22 (1999), No. 1, p. 27.

    Article  Google Scholar 

  15. J. F. Grandfield, J. A. Taylor, and C. J. Davidson, Tensile coherency in semi-solid AZ91 alloy, Magnesium Technol., (2002), p. 207.

    Google Scholar 

  16. L. J. Colley, M. A. Wells, and D. M. Maijer, Tensile properties of as-cast AA5182Close to the solidus temperature, Mater. Sci. Eng. A, 386 (2004), No. 1-2, p. 140.

    Article  Google Scholar 

  17. W. M. van Haaften, W. H. Kool, and L. Katgerman, Tensile behaviour of semi-solid industrial aluminium alloys AA3104 and AA5182, Mater. Sci. Eng. A, 336 (2002), No. 1-2, p. 1.

    Article  Google Scholar 

  18. W. M. van Haaften, W. H. Kool, and L. Katgerman, Hot tearing studies in AA5182, J. Mater. Eng. Perform., 11 (2002), No. 5, p. 537.

    Article  Google Scholar 

  19. A. B. Phillion, S. L. Cockcroft, and P. D. Lee, A new methodology for measurement of semi-solid constitutive behavior and its application to examination of as-cast porosity and hot tearing in aluminum alloys, Mater. Sci. Eng. A, 491 (2008), No. 1-2, p. 237.

    Article  Google Scholar 

  20. B. Magnin, L. Maenner, L. Katgerman, and S. Engler, Ductility and rheology of an Al-4. 5% Cu alloy from room temperature to coherency temperature, Mater. Sci. Forum, 217-222 (1996), p. 1209.

    Article  Google Scholar 

  21. T. Nakagawa, P. Suvanchai, T. Okane, and T. Umeda, Deformation behavior during solidification of steels and aluminium alloys, Mater. Sci. Forum, 215-216 (1996), p. 377.

    Article  Google Scholar 

  22. H. Nagaumi and T. Umeda, Study of the crack sensitivity of 6××× and 7××× aluminum alloys, Mater. Sci. Forum, 426 (2003), p. 465.

    Article  Google Scholar 

  23. H. Nagaumi, S. Suzuki, T. Okane, and T. Umeda, Effect of iron content on hot tearing of high-strength Al-Mg-Si alloy, Mater. Trans., 47 (2006), No. 11, p. 2821.

    Article  Google Scholar 

  24. H. Nagaumi, P. Suvanchai, T. Okane, and T. Umeda, Mechanical properties of high strength Al-Mg-Si alloy during solidification, Mater. Trans., 47 (2006), No. 12, p. 2918.

    Article  Google Scholar 

  25. H. Nagaumi, S. Suzuki, T. Okane, and T. Umeda, Hot tearing of machinability improved 2××× aluminum alloy of high tin content with manganese and chromium addition, Mater. Trans., 49 (2008), No. 2, p. 324.

    Article  Google Scholar 

  26. V. Mathier, P. D. Grasso, and M. Rappaz, A new tensile test for aluminum alloys in the mushy state: experimental method and numerical modeling, Metall. Mater. Trans. A, 39 (2008), No. 6, p. 1399.

    Article  Google Scholar 

  27. A. K. Dahle, T. Sumitomo, and S. Instone, Relationship between tensile and shear strengths of the mushy zone in solidifying aluminum alloys, Metall. Mater. Trans. A, 34 (2003), No. 1, p. 105.

    Article  Google Scholar 

  28. D. Fabrègue, A. Deschamps, M. Suéry, and W. J. Poole, Rheological behavior of Al-Mg-Si-Cu alloys in the mushy state obtained by partial remelting and partial solidification at high cooling rate, Metall. Mater. Trans. A, 37 (2006), No. 5, p. 1459.

    Article  Google Scholar 

  29. A. Alankar and M. A. Wells, Constitutive behavior of as-cast aluminum alloys AA3104, AA5182 and AA6111 at below solidus temperatures, Mater. Sci. Eng. A, 527 (2010), No. 29-30, p. 7812.

    Article  Google Scholar 

  30. M. Lalpoor, D. G. Eskin, and L. Katgerman, Fracture behavior and mechanical properties of high strength aluminum alloys in the as-cast condition, Mater. Sci. Eng. A, 497 (2008), No. 1-2, p. 186.

    Article  Google Scholar 

  31. A. R. Alhassan-Abu and M. A. Wells, Determination of constitutive behaviour of as cast AA5182 for deformations that occur during direct chill casting using the Gleeble 1500 machine, Mater. Sci. Technol., 19 (2003), No. 1, p. 55.

    Google Scholar 

  32. W. M. van Haaften, B. Magnin, W. H. Kool, and L. Katgerman, Constitutive behavior of as-cast AA1050, AA3104, and AA5182, Metall. Mater. Trans. A, 33 (2002), No. 7, p. 1971.

    Article  Google Scholar 

  33. T. Subroto, A. Miroux, D. G. Eskin, A. Marson, K. Ellingsen, and L. Katgerman, Tensile mechanical behavior of as-cast AA7050 alloy in the supersolidus temperature range, [in] 13th International Conference on Fracture, Beijing, 2013, p. 1.

    Google Scholar 

  34. Q. L. Bai, H. X. Li, Q. Du, J. S. Zhang, and L. Z. Zhuang, Mechanical properties and constitutive behaviors of as-cast high strength AA7××× alloys below solidus temperature, Mater. Sci. Forum, 794-796 (2014), p. 467.

    Article  Google Scholar 

  35. I. I. Novikov, Hot Shortness of Non Ferrous Metals and Alloys, Nauka, Moscow, 1968.

    Google Scholar 

  36. Q. L. Bai, J. C. Liu, H. X. Li, Q. Du, L. Katgerman, and J. S. Zhang, L. Z. Zhuang, A modified hot tearing criterion for direct chill casting of aluminium alloys, Mater. Sci. Technol., 32 (2016), No. 8, p. 846.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-xiang Li or Lin-zhong Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Ql., Li, Hx., Du, Q. et al. Mechanical properties and constitutive behaviors of as-cast 7050 aluminum alloy from room temperature to above the solidus temperature. Int J Miner Metall Mater 23, 949–958 (2016). https://doi.org/10.1007/s12613-016-1311-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1311-3

Keywords

Navigation