Skip to main content
Log in

Microstructure and mechanical properties of cryorolled AZ31 magnesium alloy sheets with different initial textures

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction (RD) and transverse directions (TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A \(\left\{ {10\;\bar 12} \right\}\) extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. B. Jiang, L. Guan, G. Y. Tang, B. Cheng, and D. B. Liu, Microstructure and texture evolution of Mg-3Zn-1Al magnesium alloy during large-strain electroplastic rolling, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 411.

    Article  Google Scholar 

  2. L. Zhang, Z. Liu, and P. L. Mao, Effect of annealing on the microstructure and mechanical properties of Mg-2.5Zn-0.5Y alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 779.

    Article  Google Scholar 

  3. R. Z. Wang, Z. H. Chen, Y. J. Li, and C. F. Dong, Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model, Int. J. Miner. Metall. Mater., 20(2013), No. 12, p. 1198.

    Article  Google Scholar 

  4. Y. J. Chu, J. Chen, X. Q. Li, S. Q. Wu, and Z. H. Yang, Effects of thermomechanical treatments on the microstructures and mechanical properties of GTA-welded AZ31B magnesium alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 945.

    Article  Google Scholar 

  5. G. R. Li, HM. Wang, Y. Cai, Y. T. Zhao, J. J. Wang, and S. P. A. Gill, Microstructure and mechanical properties of AZ91 magnesium alloy subject to deep cryogenic treatment, Int. J. Miner. Metall. Mater., 20(2013), No. 9, p. 896.

    Article  Google Scholar 

  6. C. J. Li, H. F. Sun, X. W. Li, J. L. Zhang, W. B. Fang, and Z. Y. Tan, Microstructure, texture and mechanical properties of Mg-0.3Zn-0.2Ca alloys fabricated by extrusion at various temperature, J. Alloys Compd., 652(2015), p. 122.

    Article  Google Scholar 

  7. M. Gzyl, A. Rosochowski, S. Boczkal, and L. Olejnik, The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP, Mater. Sci. Eng. A, 638(2015), p. 20.

    Article  Google Scholar 

  8. M. Kaseem, H. W. Yang, K. Hamad, Y. G. Kim, B. H. Park, and Y. G. Ko, Microstructure and plastic anisotropy of fine grained AZ31 magnesium alloy fabricated by differential speed roliing at 473 and 573K, Mater. Res. Innovations, 19(2015), Suppl. 5, p. 477.

    Google Scholar 

  9. S. V. S. N. Murty, N. Nayan, R. Madhavan, S. C. Sharma, K. M. George, and S. Suwas, Analysis of Microstructure and texture evolution in Mg-3Al-1Zn alloy processed through groove rolling, J. Mater. Eng. Perform., 24(2015), p. 2091.

    Article  Google Scholar 

  10. Z. Trojanová, T. Donic, P. Lukác, P. Palcek, M. Chalupová, E. Tillová, and R. Baštovanský, Tensile and fracture properties of an Mg-RE-Zn alloy at elevated temperatures, J. Rare Earths, 32(2014), No. 6, p. 564.

    Article  Google Scholar 

  11. T. Homma, S. Hirawatari, H. Sunohara, and S. Kamado, Room and elevated temperature mechanical properties in the as-extruded Mg–Al–Ca–Mn alloys, Mater. Sci. Eng. A, 539(2012), p. 163.

    Article  Google Scholar 

  12. M. R. Barnett and N. Stanford, Influence of microstructure on strain distribution in Mg–3Al–1Zn, Scripta Mater., 57(2007), p. 1125.

    Article  Google Scholar 

  13. Z. Zhang, P. Cizek, and M. Barnett, A critical test of twin-induced softening in a magnesium alloy extruded to a strain of 0.7 at room temperature, Scripta Mater., 67(2012), p. 1015.

    Article  Google Scholar 

  14. P. Cizek and M. R. Barnett, Characteristics of the contraction twins formed close to the fracture surface in Mg–3Al–1Zn alloy deformed in tension, Scripta Mater., 59(2008), p. 959.

    Article  Google Scholar 

  15. M. R. Barnett, S. Jacob, B. F. Gerard, and J. G. Mullins, Necking and failure at low strains in a coarse-grained wrought Mg alloy, Scripta Mater., 59(2008), p. 1035.

    Article  Google Scholar 

  16. J. R. Luo, Q. Liu, W. Liu, and A. Godfrey, The effect of {10 11} - {1012} double twinning on the microstructure, texture and mechanical properties of AZ31 magnesium alloy sheet during rolling deformation, Acta Metall. Sin., 47(2012), No. 12, p. 1567.

    Google Scholar 

  17. H. Yan, S. W. Xu, R. S. Chen, S. Kamado, T. Honma, and E. H. Han, Twins, shear bands and recrystallization of a Mg–2.0%Zn–0.8%Gd alloy during rolling, Scripta Mater., 64(2011), p. 141.

    Article  Google Scholar 

  18. D. Ando, J. Koike, and Y. Sutou, Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys, Acta Mater., 58(2010), p. 4316.

    Article  Google Scholar 

  19. M. R. Barnett, Twinning and the ductility of magnesium alloys: Part I. “Tension” twins, Mater. Sci. Eng. A, 464(2007), p. 1.

    Article  Google Scholar 

  20. M. R. Barnett, Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins, Mater. Sci. Eng. A, 464(2007), p. 8.

    Article  Google Scholar 

  21. M. R. Barnett, M. D. Nave, and C. J. Bettles, Deformation microstructures and textures of some cold rolled Mg alloys, Mater. Sci. Eng. A, 386(2004), p. 205.

    Article  Google Scholar 

  22. A. Chapuis and J. H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater., 59(2011), p. 1986.

    Article  Google Scholar 

  23. J. R. Luo, A. Godfrey, W. Liu, and Q. Liu, Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling, Acta Mater., 60(2012), p. 1986.

    Article  Google Scholar 

  24. J. R. Luo, A. Godfrey, W. Liu, and Q. Liu, Influence of rolling temperature on the {10 11}{1012} twinning in rolled AZ31 magnesium alloy sheet, Acta Mater. Sin., 48(2012), p. 717.

    Google Scholar 

  25. A. Ghaderi, F. Siska, and M. R. Barnett, Influence of temperature and plastic relaxation on tensile twinning in a magnesium alloy, Scripta Mater., 69(2013), p. 521.

    Article  Google Scholar 

  26. Y. Liu, S. Shao, C. S. Xu, X. S. Zeng, and X. J. Yang, Effect of cryogenic treatment on the microstructure and mechanical properties of Mg–1.5Zn–0.15Gd magnesium alloy, Mater. Sci. Eng. A, 588(2013), p. 76.

    Article  Google Scholar 

  27. J. Jiang, A. Godfrey, W. Liu, and Q. Liu, Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy, Scripta Mater., 58(2008), p. 122.

    Article  Google Scholar 

  28. S. Hong, S. H. Park, and C. S. Lee, Strain path dependence of {1012} twinning activity in a polycrystalline magnesium alloy, Scripta Mater., 64(2011), p. 145.

    Article  Google Scholar 

  29. M. R. Barnett, A. Ghaderi, J. Quinta da Fonseca, and J. D. Robson, Influence of orientation on twin nucleation and growth at low strains in a magnesium alloy, Acta Mater., 80(2014), p. 380.

    Article  Google Scholar 

  30. S. Hong, S. H. Park, and C. S. Lee, Role of {1012} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater., 58(2010), p. 5873.

    Article  Google Scholar 

  31. J. R. Luo, X. P. Chen, R. L. Xin, G. J. Huang, and Q. Liu, Comparison of microstructure and properties of AZ31 Mg alloy sheets produced through different routes, Trans. Nonferrous Met. Soc. China., 18(2008), p. s194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-ru Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Jr., Yan, Yq., Zhang, Js. et al. Microstructure and mechanical properties of cryorolled AZ31 magnesium alloy sheets with different initial textures. Int J Miner Metall Mater 23, 827–834 (2016). https://doi.org/10.1007/s12613-016-1297-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1297-x

Keywords

Navigation