Skip to main content

Advertisement

Log in

Effect of annealing on the microstructure and mechanical properties of Mg-2.5Zn-0.5Y alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of extruded Mg-2.5Zn-0.5Y alloy before and after annealing treatments were investigated. The as-extruded alloy exhibits a yield tensile strength (YTS) of 305.9 MPa and an ultimate tensile strength (UTS) of 354.8 MPa, whereas the elongation is only 4%. After annealing, the YTS and UTS decrease to 150 MPa and 240 MPa, respectively, and the elongation increases to 28%. Interestingly, the annealed alloy maintains an acceptable stress level even after a much higher ductility is achieved. These excellent mechanical properties stem from the combined effects of fine α-Mg dynamic recrystallization (DRX) grains and a homogeneously distributed icosahedral quasicrystalline phase (I-phase) in the α-Mg DRX grains. In particular, the superior ductility originates from the coherent interface of I-phase and α-Mg and from the formation of the secondary twin \(\{ 10\bar 11\} - \{ 10\bar 12\} (38^ \circ < 1\bar 210 > )\) in the tension twin \(\{ 10\bar 12\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening evolution of AZ31B Mg sheet, Int. J. Plast., 23(2007), No. 1, p. 44.

    Article  Google Scholar 

  2. J. Bohlen, S.B. Yi, D. Letzig, and K.U. Kainer, Effect of rare earth elements on the microstructure and texture development in magnesium-manganese alloys during extrusion, Mater. Sci. Eng. A, 527(2010), No. 26, p. 7092.

    Article  Google Scholar 

  3. C.J. Boehlert and K. Knittel, The microstructure, tensile properties, and creep behavior of Mg-Zn alloys containing 0–4.4 wt.% Zn, Mater. Sci. Eng. A, 417(2006), No. 1–2, p. 315.

    Article  Google Scholar 

  4. X.F. Guo, S. Remennik, C.J. Xu, and D. Shechtman, Development of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy and its microstructural evolution during processing, Mater. Sci. Eng. A, 473(2008), No. 1–2, p. 266.

    Article  Google Scholar 

  5. N. Stanford, Micro-alloying Mg with Y, Ce, Gd and La for texture modification: a comparative study, Mater. Sci. Eng. A, 527(2010), No. 10–11, p. 2669.

    Article  Google Scholar 

  6. N. Stanford and M. Barnett, Effect of composition on the texture and deformation behaviour of wrought Mg alloys, Scripta Mater., 58(2008), No. 3, p. 179.

    Article  Google Scholar 

  7. H. Li, W.B. Du, S.B. Li, and Z.H. Wang, Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys, Mater. Des., 35(2012), p. 259.

    Article  Google Scholar 

  8. D.H. Bae, S.H. Kim, D.H. Kim, and W.T. Kim, Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles, Acta Mater., 50(2002), No. 9, p. 2343.

    Article  Google Scholar 

  9. J.Y. Lee, H.K. Lim, D.H. Kim, W.T. Kim, and D.H. Kim, Effect of volume fraction of quasicrystal on the mechanical properties of quasicrystal-reinforced Mg-Zn-Y alloys, Mater. Sci. Eng. A, 449–451(2007), p. 987.

    Article  Google Scholar 

  10. A. Singh, H. Somekawa, and T. Mukai, High temperature processing of Mg-Zn-Y alloys containing quasicrystal phase for high strength, Mater. Sci. Eng. A, 528(2011), No. 21, p. 6647.

    Article  Google Scholar 

  11. A. Singh, Y. Osawa, H. Somekawa, and T. Mukai, Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg-Zn-Y alloys containing quasicrystal phase, Scripta Mater., 64(2011), No. 7, p. 661.

    Article  Google Scholar 

  12. S.Q. Luo, A.T. Tang, F.S. Pan, K. Song, and W.Q. Wang, Effect of mole ratio of Y to Zn on phase constituent of Mg-Zn-Zr-Y alloys, Trans. Nonferrous Met. Soc. China, 21(2011), No. 4, p. 795.

    Article  Google Scholar 

  13. M.X. Xia, S. Mitra, B. Dhindaw, G.J. Liu, and Z.Y. Fan, Melt conditioned, high-pressure die casting of Mg-Zn-Y alloy, Metall. Mater. Trans. B, 41(2010), No. 1, p. 209.

    Article  Google Scholar 

  14. E. Mora, G. Garcés, E. Oñorbe, P. Pérez, and P. Adeva, High-strength Mg-Zn-Y alloys produced by powder metallurgy, Scripta Mater., 60(2009), No. 9, p. 776.

    Article  Google Scholar 

  15. B. Chen, C. Lu, D.L. Lin, and X.Q. Zeng, Characterization of microstructure in high strength Mg96Y3Zn1 alloy processed by extrusion and equal channel angular pressing, J. Rare Earths, 29(2011), No. 9, p. 902.

    Article  Google Scholar 

  16. J.S. Zhang, H.W. Du, W. Liang, C.X. Xu, and B.F. Lu, Effect of Mn on the formation of Mg-based spherical icosahedral quasicrystal phase, J. Alloys Compd., 427(2007), No. 1–2, p. 244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, Z. & Mao, Pl. Effect of annealing on the microstructure and mechanical properties of Mg-2.5Zn-0.5Y alloy. Int J Miner Metall Mater 21, 779–784 (2014). https://doi.org/10.1007/s12613-014-0971-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0971-0

Keywords

Navigation