Skip to main content
Log in

Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

We present a study concerning Fe–0.176C–1.31Si–1.58Mn–0.26Al–0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile tests demonstrate that the microstructures primarily consist of lath martensite, retained austenite, lower bainite (LB), and a small amount of tempered martensite; moreover, few twin austenite grains were observed. In the microstructure, three types of retained austenite with different sizes and morphologies were observed: blocky retained austenite (~300 nm in width), film-like retained austenite (80–120 nm in width), and ultra- fine film-like retained austenite (30–40 nm in width). Because of the effect of the retained austenite/martensite/LB triplex microstructure, the specimens prepared using different quenching temperatures exhibit high ultimate tensile strength and yield strength. Furthermore, the strength effect of LB can partially counteract the decreasing strength effect of martensite. The formation of LB substantially reduces the amount of retained austenite. Analyses of the retained austenite and the amount of blocky retained austenite indicated that the carbon content is critical to the total elongation of Q&P steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Malakondaiah, M. Srinivas, and P. Rama Rao, Ultra-high-strength low-alloy steels with enhanced fracture toughness, Prog. Mater. Sci., 42(1997), No. 1-4, p. 209.

    Article  Google Scholar 

  2. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611.

    Article  Google Scholar 

  3. J.G. Speer, F.C. Rizzo Assunção, D.K. Matlock, and D.V. Edmonds, The “quenching and partitioning” process: background and recent progress, Mater. Res., 8(2005), No. 4, p. 417.

    Article  Google Scholar 

  4. L.Y. Zhou, D. Zhang, and Y.Z. Liu, Influence of silicon on the microstructures, mechanical properties and stretchflangeability of dual phase steels, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 755.

    Article  Google Scholar 

  5. S. Zaefferer, J. Ohlert, and W. Bleck, A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel, Acta Metall., 52(2004), No. 9, p. 2765.

    Google Scholar 

  6. H.X. Yin, A.M. Zhao, Z.Z. Zhao, X. Li, S.J. Li, H.J. Hu, and W.G. Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultra-highstrength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 262.

    Article  Google Scholar 

  7. Y.J. Zhao, X.P. Ren, W.C. Yang, and Y. Zang, Design of a low-alloy high-strength and high-toughness martensitic steel, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 733.

    Article  Google Scholar 

  8. M.J. Santofimia, L. Zhao, R. Petrov, and J. Sietsma, Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel, Mater. Charact., 59(2008), No. 12, p. 1758.

    Article  Google Scholar 

  9. Y. Wang, Z.H. Guo, N.L. Chen, and Y.H. Rong, Deformation temperature dependence of mechanical properties and microstructures for a novel quenching-partitioning-tempering steel, J. Mater. Sci. Technol., 29(2013), No. 5, p. 451.

    Article  Google Scholar 

  10. H.Y. Li, X.W. Lu, X.C. Wu, Y.A. Min, and X.J. Jin, Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6255.

    Article  Google Scholar 

  11. H. F. Xu, J. Zhao, W. Q. Cao, J. Shi, C. Y. Wang, J. Li, and H. Dong, Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel, ISIJ Int., 52(2012), No. 5, p. 868.

    Article  Google Scholar 

  12. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J. Robinson, and S.M. Martin, MTDATA-thermodynamic and phase equilibrium software from the national physical laboratory, Calphad, 26(2002), No. 2, p. 229.

    Article  Google Scholar 

  13. C.F. Jatczak, Retained Austenite and its Measurement by X-ray Diffraction, Society of Automotive Engineers Inc., Warrendale, PA, 1980, p. 9.

    Google Scholar 

  14. D.J. Dyson and B. Holmes, Effect of alloying additions on lattice parameter of austenite, J. Iron Steel Inst., 208(1970), p. 469.

    Google Scholar 

  15. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater., 53(2005), No. 20, p. 5439.

  16. Z.G. Yang and H.S. Fang, An overview on bainite formation in steels, Curr. Opin. Solid State Mater. Sci., 9(2005), No. 6, p. 277.

    Article  Google Scholar 

  17. S.M.C. van Bohemen, M.J. Santofimia, and J. Sietsma, Experimental evidence for bainite formation below Ms in Fe-0.66C, Scripta Mater., 58(2008), No. 6, p. 488.

    Article  Google Scholar 

  18. G.H. Gao, H. Zhang, Z.L. Tan, W.B. Liu, and B.Z. Bai, A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching -partitioning-tempering process, Mater. Sci. Eng. A, 559(2013), p. 165.

    Article  Google Scholar 

  19. J. Sun and H. Yu, Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process, Mater. Sci. Eng. A, 586(2013), p. 100.

    Article  Google Scholar 

  20. M.J. Santofimia, L. Zhao, and J. Sietsma, Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metall. Mater. Trans. A, 40(2009), No.1, p. 46.

    Article  Google Scholar 

  21. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, and J. Sietsma, New low carbon Q&P steels containing film-like intercritical ferrite, Mater. Sci. Eng. A, 527(2010), p. 6429.

    Article  Google Scholar 

  22. J.G. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. Ågren, Scripta Materialia, 50, 697-9 (2004), Scripta Mater. 52(2005), No. 1, p. 83.

    Article  Google Scholar 

  23. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater., 54(2006), No. 5, p. 1279.

    Article  Google Scholar 

  24. H.Y. Li, X.W. Lu, W.J. Li, and X.J. Jin, Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process, Metall. Mater. Trans. A, 41(2010), No. 5, p. 1284.

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia, and D.V. Edmonds, The bainite transformation in a silicon steel, Metall. Trans. A, 10(1979), No. 7, p. 895.

    Article  Google Scholar 

  26. H.L. Yi, P. Chen, and H.K.D.H. Bhadeshia, Optimizing the morphology and stability of retained austenite in a d-TRIP steel, Metall. Mater. Trans. A, 45(2014), No. 8, p. 3512.

    Article  Google Scholar 

  27. R. Ding, D. Tang, and A.M. Zhao, A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel, Scripta Mater., 88(2014), p. 21.

    Article  Google Scholar 

  28. G.K. Tirumalasetty, M.A. van Huis, C. Kwakernaak, J. Sietsma, W.G. Sloof, and H.W. Zandbergen, Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel, Acta Mater., 60(2012), No. 3, p. 1311.

    Article  Google Scholar 

  29. D.P. Koistinen and R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 7(1959), No. 1, p. 59.

    Article  Google Scholar 

  30. H.P. Liu, X.W. Lua, X.J. Jin, H. Dong, and J. Shi, Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process, Scripta Mater., 64(2011), No. 8, p. 749.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-huai Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ws., Gao, Hy., Li, Zy. et al. Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process. Int J Miner Metall Mater 23, 303–313 (2016). https://doi.org/10.1007/s12613-016-1239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1239-7

Keywords

Navigation