Skip to main content

Advertisement

Log in

Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J. Van Humbeeck, Comparison of the effects of silicon and aluminum on the tensile behavior of multiphase trip-assisted steels, Scripta Mater., 44 (2001), No. 6, p. 885.

    Article  Google Scholar 

  2. H. Y. Yu and L. Bao, Flow stress model considering the transformation-induced plasticity effect and the inelastic strain recovery behavior, Int. J. Miner. Metall. Mater., 18 (2011), No. 2, p. 185.

    Article  Google Scholar 

  3. F. D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter, A new view on transformation induced plasticity (TRIP), Int. J. Plast., 16 (2000), No. 7-8, p. 723.

    Article  Google Scholar 

  4. H. X. Yin, A. M. Zhao, Z. Z. Zhao, X. Li, S. J. Li, H. J. Hu, and W. G. Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultrahigh-strength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22 (2015), No. 3, p. 262.

    Article  Google Scholar 

  5. J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51 (2003), No. 9, p. 2611.

    Article  Google Scholar 

  6. J. G. Speer, F. C. Rizzo Assunção, D. K. Matlock, and D. V. Edmonds, The “quenching and partitioning” process: background and recent progress, Mater. Res., 8 (2005), No. 4, p. 417.

    Article  Google Scholar 

  7. M. J. Santofimia, L. Zhao, R. Petrov, and J. Sietsma, Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel, Mater. Charact., 59 (2008), No. 12, p. 1758.

    Article  Google Scholar 

  8. H. T. Jiang, B. T. Zhuang, X. G. Duan, Y. X. Wu, and Z. X. Cai, Element distribution and diffusion behavior in Q&P steel during partitioning, Int. J. Miner. Metall. Mater., 20 (2013), No. 11, p. 1050.

    Article  Google Scholar 

  9. M. J. Santofimia, C. Kwakernaak, W. G. Sloof, L. Zhao, and J. Sietsma, Experimental study of the distribution of alloying elements after the formation of epitaxial ferrite upon cooling in a low-carbon steel, Mater. Charact., 61 (2010), No. 10, p. 937.

    Article  Google Scholar 

  10. M. J. Santofimia, L. Zhao, and J. Sietsma, Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization, Metall. Mater. Trans. A, 40 (2009), No. 1, p. 46.

    Article  Google Scholar 

  11. J. Sun and H. Yu, Microstructure development and mechanical properties of quenching and partitioning (Q&P) steel and an incorporation of hot-dipping galvanization during Q&P process, Mater. Sci. Eng. A, 586 (2013), No. 12, p. 100.

    Article  Google Scholar 

  12. R. H. Davies, A. T. Dinsdale, J. A. Gisby, J. Robinson, and S. M. Martin, MTDATA-thermodynamic and phase equilibrium software from the national physical laboratory, Calphad, 26 (2002), No. 2, p. 229.

    Article  Google Scholar 

  13. J. Durnin and K. A. Ridal, Determination of retained austenite in steel by X-ray diffraction, J. Iron Steel Inst., 206 (1968), No. 6, p. 60.

    Google Scholar 

  14. D. J. Dyson and B. J. Holmes, Effect of alloying additions on the lattice parameter of austenite, J. Iron Steel Inst., 208(1970) No. 2, p. 469.

    Google Scholar 

  15. M. Oka and H. Okamoto, Swing back in kinetics near Ms in hypereutectoid steels, Metall. Trans. A, 19 (1988), No. 3, p. 447.

    Article  Google Scholar 

  16. S. M. C. van Bohemen, M. J. Santofimia, and J. Sietsma, Experimental evidence for bainite formation below Ms in Fe-0.66 C, Scripta Mater., 58 (2008), No. 6, p. 488.

    Article  Google Scholar 

  17. Ch. V. Kopezky, V. Yu. Novikov, L. K. Fionova, and N. A. Bolshakova, Investigation of annealing twins in fcc metals, Acta Metall., 33 (1985), No. 5, p. 873.

    Article  Google Scholar 

  18. S. Mahajan, C. S. Pande, M. A. Imam, and B. B. Rath, Formation of annealing twins in fcc crystals, Acta Mater., 45 (1997), No. 6, p. 2633.

    Article  Google Scholar 

  19. D. P. Koistinen and R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metall., 7 (1959), No. 1, p. 59.

    Article  Google Scholar 

  20. H. Y. Li, X. W. Lu, X. C. Wu, Y. A. Min, and X. J. Jin, Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon, Mater. Sci. Eng. A, 527 (2010), No. 23, p. 6255.

    Article  Google Scholar 

  21. H. Y. Li, X. W. Lu, W. J. Li, and X. J. Jin, Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process, Metall. Mater. Trans. A, 41 (2010), No. 5, p. 1284.

    Article  Google Scholar 

  22. N. Zhong, X. D. Wang, Y. H. Rong, and L. Wang, Interface migration between martensite and austenite during the quenching and partitioning process, J. Mater. Sci. Technol., 22 (2006), No. 6, p. 751.

    Google Scholar 

  23. M. J. Santofimia, L. Zhao, and J. Sietsm, Model for the interaction between interface migration and carbon diffusion during annealing of martensite–austenite microstructures in steels, Scripta Mater., 59 (2008), No. 2, p. 159.

    Article  Google Scholar 

  24. M. J. Santofimia, L. Zhao, and J. Sietsma, Overview of mechanisms involved during the quenching and partitioning process in steels, Metall. Mater. Trans. A, 42 (2011), No. 12, p. 3620.

    Article  Google Scholar 

  25. Y. Takahamaa, M. J. Santofimiaa, M. G. Mecozzi, L. Zhao, and J. Sietsma, Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel, Acta Mater., 60 (2012), No. 6-7, p. 2916.

    Article  Google Scholar 

  26. J. G. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. Ågren, Scripta Materialia, 50, 697–9 (2004), Scripta Mater., 52 (2005), No. 1, p. 83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-huai Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ws., Gao, Hy., Nakashima, H. et al. Microstructural evolution and mechanical properties of a low-carbon quenching and partitioning steel after partial and full austenitization. Int J Miner Metall Mater 23, 906–919 (2016). https://doi.org/10.1007/s12613-016-1306-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-016-1306-0

Keywords

Navigation