Skip to main content
Log in

Preparation and characterization of oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites and their calcined thin films

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Oil-soluble In2O3 nanoparticles and In2O3–SnO2 nanocomposites were prepared in oleylamine via decomposition of metal acetylacetonate precursors. Thin films of In2O3 and In2O3–SnO2 were obtained by spin-coating solutions of the oil-soluble In2O3 nanoparticles and In2O3–SnO2 nanocomposites onto substrates and then calcining them. Transmission electron microspectroscopy, scanning electron microspectroscopy, atomic force microspectroscopy, X-ray diffraction, ultraviolet–visible absorption, and photoluminescence spectroscopy were used to investigate the properties of the nanoparticles and thin films. The In2O3 nanoparticles were cubic-phased spheres with a diameter of ~8 nm; their spectra exhibited a broad emission peak centered at 348 nm. The In2O3–SnO2 nanocomposites were co-particles composed of smaller In2O3 particles and larger SnO2 particles; their spectra exhibited a broad emission peak at 355 nm. After the In2O3–SnO2 nanocomposites were calcined at 400°C, the obtained thin films were highly transparent and conductive, with a thickness of 30–40 nm; the surfaces of the thin films were smooth and crack-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, and P. Siciliano, Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties, Chem. Mater., 15(2003), No. 23, p. 4377.

    Article  Google Scholar 

  2. J. Puetz, N. Al-dahoudi, and M.A. Aegerter, Processing of transparent conducting coatings made with redispersible crystalline nanoparticles, Adv. Eng. Mater., 6(2004), No. 9, p. 733.

    Article  Google Scholar 

  3. I. Hamberg and C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows, J. Appl. Phys., 60(1986), No. 11, p. R123.

    Article  Google Scholar 

  4. J. Tamaki, C. Naruo, Y. Yamamoto, and M. Matsuoka, Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation, Sens. Actuators B, 83(2002), No. 1–3, p. 190.

    Article  Google Scholar 

  5. S. Joseph and S. Berger, Optical transparency and electrical conductivity of nonstoichiometric ultrathin InxOy films, J. Vac. Sci. Technol. A, 29(2011), No. 4, art. No. 041511.

    Article  Google Scholar 

  6. A. Gurlo, M. Ivanovskaya, N. Bârsan, M. Schweizer-Berberich, U. Weimar, W. Göpel, and A. Diéguez, Grain size control in nanocrystalline In2O3 semiconductor gas sensors, Sens. Actuators B, 44(1997), No. 1–3, p. 327.

    Article  Google Scholar 

  7. J.Y. Lao, J.Y. Huang, D.Z. Wang, and Z.F. Ren, Self-assembled In2O3 nanocrystal chains and nanowire networks, Adv. Mater., 16(2004), No. 1, p. 65.

    Article  Google Scholar 

  8. C.H. Lee, M. Kim, T. Kim, A. Kim, J. Paek, J.W. Lee, S.Y. Choi, K. Kim, J.B. Park, and K. Lee, Ambient pressure syntheses of size-controlled corundum-type In2O3 nanocubes, J. Am. Chem. Soc., 128(2006), No. 29, p. 9326.

    Article  Google Scholar 

  9. G. Williams and G.S.V. Coles, Gas sensing properties of nanocrystalline metal oxide powders produced by a laser evaporation technique, J. Mater. Chem., 8(1998), No. 7, p. 1657.

    Article  Google Scholar 

  10. J. Gao, R. Chen, D.H. Li, L. Jiang, J.C. Ye, X.C. Ma, X.D. Chen, Q.H. Xiong, H.D. Sun, and T. Wu, UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires, Nanotechnology, 22(2011), No. 19, p. 195706.

    Article  Google Scholar 

  11. A.J. Chiquito, A.J.C. Lanfredi, and E.R. Leite, Electron-electron scattering in Sn doped In2O3 nanowires, Phys. E, 40(2008), No. 3, p. 449.

    Article  Google Scholar 

  12. J.W. Elam, D.A. Baker, A.B.F. Martinson, M.J. Pellin, and J.T. Hupp, Atomic layer deposition of indium tin oxide thin films using nonhalogenated precursors, J. Phys. Chem. C, 112(2008), No. 6, p. 1938.

    Article  Google Scholar 

  13. N.G. Pramod, S.N. Pandey, and P.P. Sahay, Sn-doped In2O3 nanocrystalline thin films deposited by spray pyrolysis: microstructural, optical, electrical, and formaldedyde-sensing characteristics, J. Therm. Spray Technol., 22(2013), No. 6, p. 1035.

    Article  Google Scholar 

  14. J. Ni, H. Yan, A.C. Wang, Y. Yang, C.L. Stern, A.W. Metz, S. Jin, L. Wang, T.J. Marks, J.R. Ireland, and C.R. Kannewurf, MOCVD-derived highly transparent, conductive zincand tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes, J. Am. Chem. Soc., 127(2005), No. 15, p. 5613.

    Article  Google Scholar 

  15. J.T. McCue and J.Y. Ying, SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection, Chem. Mater., 19(2007), No. 5, p. 1009.

    Article  Google Scholar 

  16. J. Kaur, R. Kumar, and M.C. Bhatnagar, Effect of indium-doped SnO2 nanoparticles on NO2 gas sensing properties, Sens. Actuators B, 126(2007), No. 2, p. 478.

    Article  Google Scholar 

  17. R.K. Gupta, N. Mamidi, K. Ghosh, S.R. Mishra, and P.K. Kahol, Growth and characterization of In2O3 thin films prepared by pulsed laser deposition, J. Optoelectron. Adv. Mater., 9(2007), No. 7, p. 2211.

    Google Scholar 

  18. S. Calnan, H.M. Upadhyaya, M.J. Thwaites, and A.N. Tiwari, Properties of indium tin oxide films deposited using high target utilization sputtering, Thin Solid Films, 515(2007), No. 15, p. 6045.

    Article  Google Scholar 

  19. S.M. Rozati and T. Ganj, Transparent conductive Sn-doped indium oxide thin films deposited by spray pyrolysis technique, Renew. Energy, 29(2004), No. 10, p. 1671.

    Article  Google Scholar 

  20. A. Suzuki and K. Maki, Transparent conductive thin films of Sn doped In2O3 grown by aerosol-assisted CVD using In-III acetylacetonate with 5 mol% Sn-IV bis-acetylacetonate dibromide dissolved in acetylacetone, Chem. Vapor Depos., 12(2006), No. 10, p. 608.

    Article  Google Scholar 

  21. M. Epifani, R. Díaz, J. Arbiol, P. Siciliano, and J.R. Morante, Solution synthesis of thin films in the SnO2-In2O3 system: a case study of the mixing of sol–gel and metal–organic solution processes, Chem. Mater., 18(2006), No. 3, p. 840.

    Article  Google Scholar 

  22. L. Korösi, S. Papp, and I. Dékány, Preparation of transparent conductive indium tin oxide thin films from nanocrystalline indium tin hydroxide by dip-coating method, Thin Solid Films, 519(2011), No. 10, p. 3113.

    Article  Google Scholar 

  23. L.E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state, J. Chem. Phys., 80(1984), No. 9, p. 4403.

    Article  Google Scholar 

  24. F. Yang, J. Ma, X.J. Feng, and L.Y. Kong, Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition, J. Cryst. Growth, 310(2008), No. 18, p. 4054.

    Article  Google Scholar 

  25. J.S. Lee and S.C. Choi, Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process, J. Eur. Ceram. Soc., 25(2005), No. 14, p. 3307.

    Article  Google Scholar 

  26. P. Prathap, Y.P.V. Subbaiah, M. Devika, and K.T. Ramakrishna Reddy, Optical properties of In2O3 films prepared by spray pyrolysis, Mater. Chem. Phys., 100(2006), No. 2–3, p. 375.

    Article  Google Scholar 

  27. J.J. Valenzuela-Jáuregui, R. Quintero-González, J. Hernández-Torres, A. Mendoza-Galván, and R. Ramírez-Bon, Characterization of SnO2, In2O3, and ITO films prepared by thermal oxidation of DC-sputtered Sn, In and In–Sn films, Vacuum, 76(2004), No. 2–3, p. 177.

    Article  Google Scholar 

  28. J.H. Lee and B.O. Park, Transparent conducting In2O3 thin films prepared by ultrasonic spray pyrolysis, Surf. Coat. Technol., 184(2004), No. 1, p. 102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Lp., Xu, Xd. & Wang, Jx. Preparation and characterization of oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites and their calcined thin films. Int J Miner Metall Mater 22, 543–548 (2015). https://doi.org/10.1007/s12613-015-1105-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1105-z

Keywords

Navigation