Skip to main content
Log in

Modeling the effects of ore properties on water recovery in the thickening process

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 03 October 2014

Abstract

A better understanding of solid-liquid separation would assist in improving the thickening performance and perhaps water recovery as well. The present work aimed to develop an empirical model to study the effects of ore properties on the thickening process based on pilot tests using a column. A hydro-cyclone was used to prepare the required samples for the experiments. The model significantly predicted the experimental underflow solid content using a regression equation at a given solid flux and bed level for different samples, indicating that ore properties are the effective parameters in the thickening process. This work confirmed that the water recovery would be increased about 5% by separating the feed into two parts, overflow and underflow, and introducing two different thickeners into them separately. This is duo to the fact that thickeners are limited by permeability and compressibility in operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Maurice, N.H. Fuerstenau, and N. Kenneth, Principles of Mineral Processing Handbook, Society for Mining, Metallurgy and Exploration, SME, Colorado, 2003, p. 340.

    Google Scholar 

  2. A.B. Fourie, Paste and Thickened Tailings: a Guide, Australian Centre for Geomechanics, University of Western Australia, Perth, 2006, p. 5.

    Google Scholar 

  3. J.S. Slottee and J. Johnson, Paste Thickener design and operation selected to achieve downstream requirements, [in] 12th International Seminar on Paste and Thickened Tailings, Chile, 2009. p. 6.

    Google Scholar 

  4. N. September and R. Kirkwood, Clermont coal mine project selection of tailings paste thickener, [in] AusIMM — Technical Meeting, Rio Tinto, 2010. p. 10.

    Google Scholar 

  5. A.L. Mular, D.N. Halbe, and D.J. Barratt, Mineral Processing Plant Design, Practice and Control Proceedings Handbook, Littelton Colorado, 2002, p. 1295.

    Google Scholar 

  6. http://www.metsominerals.com, Brochure, 2011.

  7. J.H. Perry, Chemical Engineering Handbook, McGraw-Hill Companies, New York, 1950. p. 250.

    Google Scholar 

  8. http://www.outotec.com, Paste Brochure, February, 2011.

  9. F. Sofra and D.V. Boger, Slope Prediction for thickened tailings and paste, tailings and mine waste, [in] Proceedings of the 8th International Conference on Tailings and Mine Waste, Rotterdam, 2001, p. 75.

    Google Scholar 

  10. P. Newman and D. Landriault, The use of paste technology in the surface disposal of mineral waste, [in] Waste Minimization and Recycle Conference, Birmingham, 1997. p. 55.

    Google Scholar 

  11. T. Meggyes and A. Debreczeni, Paste technology for tailing management, Land Contam. Reclamat., 14(2006), p. 41.

    Google Scholar 

  12. http://www.dorrolivereimco.com, Brochure, 2004.

  13. I. Arbuthnot, B. Garraway, R. Triglavcanin, T. Edwards, D. Colwell, and K. Roberts K., Designing for paste thickening, [in] Proceedings of the Canadian Mineral Processors, Perth, 2005, p. 597.

    Google Scholar 

  14. W.A. Cincilla, D.A. Landriault, and R. Verburg, Application of paste technology to surface disposal of mineral wastes, tailings and mine waste, [in] Proceedings of the 4th International Conference on Tailings and Mine Waste, Rotterdam, 1997, p. 343.

    Google Scholar 

  15. R. Buscall, P.D.A. Mills, R.F. Stewart, D. Sutton, L.R. White, and G.E. Yates, The rheology of strongly-flocculated suspensions, J. Non-Newton. Fluid Mech., 24(1987), No. 2, p. 183.

    Article  Google Scholar 

  16. H.S. Coe and G.H. Clevenger, Methods for determining the capacities of slime thickening tanks, Trans. AIME, 55(1916), p. 356.

    Google Scholar 

  17. G.J. Kynch, A theory of sedimentation, Trans. Faraday Soc., 48(1952), p. 166.

    Article  Google Scholar 

  18. W.P. Talmage and E.B. Fitch, Determining thickener unit areas, Ind. Eng. Chem., 47(1955), No. 1, p. 38.

    Article  Google Scholar 

  19. N. Yoshioka, Y. Hotta, S. Tanaka, S. Naito, and S. Tsugami, Continuous thickening of homogeneous flocculated slurries, Kagaku Kogaku, 21(1957), No. 2, p. 66.

    Article  Google Scholar 

  20. B. Fitch, Current theory and thickener design, Ind. Eng. Chem., 58(1966), No. 10, p. 18.

    Article  Google Scholar 

  21. L. Svarovsky, Solid-Liquid Separation, Butterworth Heinemann Press, London, Boston, 2000, p. 75.

    Google Scholar 

  22. J.H. Wilhelm and Y. Naide, Sizing and operating continuous thickeners, Min. Eng., 10(1981), p. 1710.

    Google Scholar 

  23. D.A. Dahlstrom and E.B. Fitch, Mineral Processing Handbook, N.L. Wiess, ed., Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, 1985, p. 2.

  24. T. Yalcin, Sedimentation characteristics of Cu-Ni mill tailings and thickener size estimation, CIM Bull., 18(1988), No. 910, p. 69.

    Google Scholar 

  25. E.G. Kelly and D.G. Spottiswood, Introduction to Mineral Processing, Mineral Engineering Services, Denver, 1982.

    Google Scholar 

  26. R. Bürger, M.C. Bustos, and F. Concha, Settling velocities of particulate systems: 9. Phenomenological theory of sedimentation processes: numerical simulation of the transient behaviour of flocculated suspensions in an ideal batch or continuous thickener, Int. J. Miner. Process., 55(1999), No. 4, p. 267.

    Article  Google Scholar 

  27. F. Concha, M.C. Bustos, and A. Barrientos, Sedimentation of Small Particles in a Viscous Fluid, Computational Mechanics Publications, Southampton, 1996, p. 51.

    Google Scholar 

  28. M.C. Bustos, F. Concha, R. Bürger, and E.M. Tory, Sedimentation and Thickening, Kluwer Academic Publishers, Dordrecht, 1999, p. 285.

    Book  Google Scholar 

  29. K.A. Landman, L.R. White, and R. Buscall, The continuous-flow gravity thickener: steady state behavior, AIChE J., 34(1988), No. 2, p. 239.

    Article  Google Scholar 

  30. K.A. Landman and L.R. White, Solid/liquid separation of flocculated suspensions, Adv. Colloid Interface Sci., 51(1994), p. 175.

    Article  Google Scholar 

  31. M.S. Nasser, F.A. Twaiq, and S.A. Onaizi, An experimental study of the relationship between eroded flocs and cohesive beds in flocculated suspensions, Miner. Eng., 30(2012), p. 67.

    Article  Google Scholar 

  32. M.D. Green, Characterisation of Suspensions in Settling and Compression [Dissertation], University of Melbourne, Australia, 1997, p. 51.

    Google Scholar 

  33. P. Garrido, F. Concha, and R. Bürger, Settling velocities of particulate systems: 14. Unified model of sedimentation, centrifugation and filtration of flocculated suspensions, Int. J. Miner. Process., 72(2003), No. 1–4, p. 57.

    Article  Google Scholar 

  34. R.G. De Kretser, D.V. Boger, and P.J. Scales, Compressive rheology: an overview, Rheol. Rev., (2003), p. 125.

    Google Scholar 

  35. P. Garrido, R. Burgos, F. Concha, and R. Bürger, Software for the design and simulation of gravity thickeners, Miner. Eng., 16(2003), No. 2, p. 85.

    Article  Google Scholar 

  36. S.P. Usher and P.J. Scales, Steady state thickener modelling from the compressive yield stress and hindered settling function, Chem. Eng. J., 111(2005), No. 2–3, p. 253.

    Article  Google Scholar 

  37. B.R. Gladman, The Effect of Shear on Dewatering of Flocculated Suspensions [Dissertation], The University of Melbourne, Melbourne, 2005, p. 55.

    Google Scholar 

  38. M.S. Nasser and A.E. James, Numerical simulation of the continuous thickening of flocculated kaolinite suspensions, Int. J. Miner. Process., 84(2007), No. 1–4, p. 144.

    Article  Google Scholar 

  39. D. Harbottle, M. Fairweather, and S. Biggs, The minimum transport velocity of colloidal silica suspensions, Chem. Eng. Sci., 66(2011), No. 11, p. 2309.

    Article  Google Scholar 

  40. D. Harbottle, S. Biggs, and M. Fairweather, Fine particle turbulence modulation, AIChE J., 57(2011), No. 7, p. 1693.

    Article  Google Scholar 

  41. S.P. Usher, R. Spehar, and P.J. Scales, Theoretical analysis of aggregate densification: impact on thickener performance, Chem. Eng. J., 151(2009), No. 1–3, p. 202.

    Article  Google Scholar 

  42. B.R. Gladman, M. Rudman, and P.J. Scales, Experimental validation of a 1-D continuous thickening model using a pilot column, Chem. Eng. Sci., 65(2010), No. 13, p. 3937.

    Article  Google Scholar 

  43. D.R. Lester, M. Rudman, and P.J. Scales, Macroscopic dynamics of flocculated colloidal suspensions, Chem. Eng. Sci., 65(2010), No. 24, p. 6362.

    Article  Google Scholar 

  44. B.B.G. van Deventer, S.P. Usher, A. Kumar, M. Rudman, and P.J. Scales, Aggregate densification and batch settling, Chem. Eng. J., 171(2011), No. 1, p. 141.

    Article  Google Scholar 

  45. R. Bürger, A. Coronel, and M. Sepúlveda, Numerical solution of an inverse problem for a scalar conservation law modeling sedimentation, [in]_E. Tadmor, J.G. Liu, A.E. Tzavaras, eds., Proceedings of Symposia in Applied Mathematics, Providence, 2009, p. 445.

    Google Scholar 

  46. R. Bürger, R. Donat, P. Mulet, and C.A. Vega, Hyperbolicity analysis of polydisperse sedimentation models via a secular equation for the flux Jacobian, SIAM J. Appl. Math., 70(2010), No. 7, p. 2186.

    Article  Google Scholar 

  47. R. Bürger, K.H. Karlsen, H. Torres, and J.D. Towers, Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units, Numer. Math., 116(2010), No. 4, p. 579.

    Article  Google Scholar 

  48. R. Bürger, S. Diehl, and I. Nopens, A consistent modelling methodology for secondary settling tanks in wastewater treatment, Water. Res., 45(2011), No. 6, p. 2247.

    Article  Google Scholar 

  49. R. Bürger, S. Diehl, S. Farås, and I. Nopens, On reliable and unreliable numerical methods for the simulation of secondary settling tanks in wastewater treatment, Comput. Chem. Eng., 41(2012), p. 93.

    Article  Google Scholar 

  50. R. Bürger, S. Diehl, S. Farås, I. Nopens, and E. Torfs, A consistent modelling methodology for secondary settling tanks: a reliable numerical method, Water Sci. Technol., 68(2013), No. 1, p. 192.

    Article  Google Scholar 

  51. A. Mcfarlane, K. Bremmell, and J. Addai-Mensah, Microstructure, rheology and dewatering behaviour of smectite dispersions during orthokinetic flocculation, Miner. Eng., 18(2005), No. 12, p. 1173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Unesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unesi, M., Noaparast, M., Shafaei, S.Z. et al. Modeling the effects of ore properties on water recovery in the thickening process. Int J Miner Metall Mater 21, 851–861 (2014). https://doi.org/10.1007/s12613-014-0981-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0981-y

Keywords

Navigation