Skip to main content
Log in

Ohmic contact properties of p-type surface conductive layer on H-terminated diamond films prepared by DC arc jet CVD

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

With the advantages of high deposition rate and large deposition area, polycrystalline diamond films prepared by direct current (DC) arc jet chemical vapor deposition (CVD) are considered to be one of the most promising materials for high-frequency and high-power electronic devices. In this paper, high-quality self-standing polycrystalline diamond films with the diameter of 100 mm were prepared by DC arc jet CVD, and then, the p-type surface conductive layer with the sheet carrier density of 1011–1013 cm−2 on the H-terminated diamond film was obtained by micro-wave hydrogen plasma treatment for 40 min. Ti/Au and Au films were deposited on the H-terminated diamond surface as the ohmic contact electrode, respectively, afterwards, they were treated by rapid vacuum annealing at different temperatures. The properties of these two types of ohmic contacts were investigated by measuring the specific contact resistance using the transmission line method (TLM). Due to the formation of Ti-related carbide at high temperature, the specific contact resistance of Ti/Au contact gradually decreases to 9.95 × 10−5 Ω·cm2 as the temperature increases to 820°C. However, when the annealing temperature reaches 850°C, the ohmic contact for Ti/Au is degraded significantly due to the strong diffusion and reaction between Ti and Au. As for the as-deposited Au contact, it shows an ohmic contact. After annealing treatment at 550°C, low specific contact resistance was detected for Au contact, which is derived from the enhancement of interdiffusion between Au and diamond films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Landstrass and K.V. Ravi, Resistivity of chemical vapor deposited diamond films, Appl. Phys. Lett., 55(1989), No. 10, p. 1391.

    Article  CAS  Google Scholar 

  2. B. Rezek and C.E. Nebel, Electronic properties of plasma hydrogenated diamond surfaces: a microscopic study, Diamond Relat. Mater., 15(2006), No. 9, p. 1374.

    Article  CAS  Google Scholar 

  3. H. Chen, C.C. Jia, S.J. Li, X.J. Jia, and X. Yang, Se lective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 364.

    Article  CAS  Google Scholar 

  4. Y.M. Fan, H. Guo, J. Xu, K. Chu, X.X. Zhu, and C.C Jia, Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure in-filtration, Int. J. Miner. Metall. Mater., 18(2011), No. 4, p. 472.

    Article  Google Scholar 

  5. K. Chu, C.C. Jia, X.B. Liang, and H. Chen, Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 234.

    Article  CAS  Google Scholar 

  6. K. Hayashi, S. Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi, and K. Kajimura, Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films, J. Appl. Phys., 81(1997), No. 2, p. 744.

    Article  CAS  Google Scholar 

  7. P. Strobel, M. Riedel, J. Ristein, and L. Ley, Surface transfer doping of diamond, Nature, 430(2004), p. 439.

    Article  CAS  Google Scholar 

  8. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett., 85(2000), No. 16, p. 3472.

    Article  CAS  Google Scholar 

  9. D. Takeuchi, M. Riedel, J. Ristein, and L. Ley, Surface band bending and surface conductivity of hydrogenated diamond, Phys. Rev. B, 68(2003), No. 4, art. No. 041304.

    Google Scholar 

  10. B. Rezek, H. Kozak, and A. Kromka, Stabilizing diamond surface conductivity by phenol-formaldehyde and acrylate resins, Thin Solid Films, 517(2009), No. 13, p. 3738.

    Article  CAS  Google Scholar 

  11. D. Kueck, A. Schmidt, A. Denisenko, and E. Kohn, Analysis of passivated diamond surface channel FET in dualgate configuration: localizing the surface acceptor, Diamond Relat. Mater., 19(2010), No. 2–3, p. 166.

    Article  CAS  Google Scholar 

  12. D. Kueck, S. Jooss, and E. Kohn, Technology of passivated surface channel MESFETs with modified gate structures, Diamond Relat. Mater., 18(2009), No. 10, p. 1306.

    Article  CAS  Google Scholar 

  13. K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D.J. Twitchen, G.A. Scarsbrook, and S.E. Coe, Diamond FET using high-quality polycrystalline diamond with f T of 45GHz and f max of 120 GHz, IEEE Electron Device Lett., 27(2006), No. 7, p. 570.

    Article  CAS  Google Scholar 

  14. M. Kasu, K. Ueda, H. Ye, Y. Yamauchi, S. Sasaki, and T. Makimoto, 2 W/mm output power density at 1 GHz for diamond FETs, Electron. Lett., 41(2005), No. 22, p. 1249.

    Article  CAS  Google Scholar 

  15. H. Yamada, A. Chayahara, Y. Mokuno, H. Umezawa, S. Shikata, and N. Fujimori, Fabrication of 1 inch mosaic crystal diamond wafers, Appl. Phys. Express, 3(2010), No. 5, art. No. 051301.

    Google Scholar 

  16. H. Yamada, A. Chayahara, Y. Mokuno, N. tsubouchi, S. Shikata, and N. Fujimori, Developments of elemental technologies to produce inch-size single-crystal diamond wafers, Diamond Relat. Mater., 20(2011), No. 4, p. 616.

    Article  CAS  Google Scholar 

  17. H. Yamada, A. Chayahara, H. Umezawa, N. Tsubouchi, Y. Mokuno, and S. Shikata, Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size, Diamond Relat. Mater., 24(2012), p. 29.

    Article  CAS  Google Scholar 

  18. O.A. Williams, R.B. Jackman, C. Nebel, and J.S. Foord, Black diamond: a new material for active electronic devices, Diamond Relat. Mater., 11(2002), No. 3–6, p. 39.

    CAS  Google Scholar 

  19. O.A. Williams, R.B. Jackman, C. Nebel, and J.S. Foord, High carrier mobilities in black diamond, Semicond. Sci. Technol., 18(2003), No. 3, p. 77.

    Article  Google Scholar 

  20. F.X. Lu, W.Z. Tang, G.F. Zhong, G.F. Zhong, T.B. Huang, J.M. Liu, G.H. Li, T.L. Lo, Y.G. Zhang, Z.L. Sun, S.M. Du, Q.Y. He, and S.I. Wang, Economical deposition of a large area of high quality diamond film by a high power DC arc plasma jet operating in a gas recycling mode, Diamond Relat. Mater., 9(2000), No. 9–10, p. 1655.

    Article  CAS  Google Scholar 

  21. F.X. Lu, W.Z. Tang, T.B. Huang, J.M. Liu, J.H. Song, W.X. Yu, and Y.M. Tong, Large area high quality diamond film deposition by high power DC arc plasma jet operating at gas recycling mode, Diamond Relat. Mater., 10(2001), No. 9–10, p. 1551.

    Article  CAS  Google Scholar 

  22. Z. Liu, C.M. Li, L.X. Chen, L.M. Wang, L.F. Hei, and F.X. Lu, Deposition of crackless freestanding diamond films on Mo substrates with Zr interlayer, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 246.

    Article  Google Scholar 

  23. C.M. Zhen, Y.Y. Wang, S.H. He, Q.F. Guo, Z.J. Yan, and Y.J. Pu, Ohmic contacts to boron-doped diamond, Opt. Mater., 23(2003), No. 1–2, p. 117.

    Article  CAS  Google Scholar 

  24. V. Venkatesan, D.M. Malta, K. Das, and A.M. Belu, Evaluation of ohmic contacts formed by B+ implantation and Ti-Au metallization on diamond, J. Appl. Phys., 74(1993), No. 2, p. 1179.

    Article  CAS  Google Scholar 

  25. R.D. McKeag, S.S.M. Chan, C. Johnson, P.R. Chalker, and R.B. Jackman, High temperature stability of chemically vapour deposited diamond diodes, Mater. Sci. Eng B, 29(1995), No. 1–3, p. 223.

    Article  Google Scholar 

  26. J.B. Cui, J. Ristein, and L. Ley, Dehydrogenation and the surface phase transition on diamond (111): kinetics and electronic structure, Phys. Rev. B, 59(1999), No. 8, p. 5847.

    Article  CAS  Google Scholar 

  27. J.L. Liu, C.M. Li, L.X. Chen, J.J. Wei, L.F. Hei, J.J. Wang, Z.H. Feng, H. Guo, F.X. Lv, Nucleation and growth surface conductivity of H-terminated diamond films prepared by DC arc jet CVD, Diamond Relat. Mater., 32(2012), p. 48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Jl., Li, Cm., Zhu, Rh. et al. Ohmic contact properties of p-type surface conductive layer on H-terminated diamond films prepared by DC arc jet CVD. Int J Miner Metall Mater 20, 802–807 (2013). https://doi.org/10.1007/s12613-013-0799-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0799-z

Keywords

Navigation