Skip to main content
Log in

Surface conductivity enhancement of H-terminated diamond based on the purified epitaxial diamond layer

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Diamond-based semiconductor with high electrical conductivity is a key point in diamond device development. In this paper, a thin single crystal diamond layer of high quality was epitaxially grown on a commercial tool-grade diamond seed by incorporating active O atoms from the typical growth environment. Subsequently, the H-termination density was enhanced on the diamond surface by exposure to the pure hydrogen plasma, and the surface conductivity of H-terminated diamond was analyzed in detail. The thin epitaxial layers on the high-pressure high-temperature diamond seeds show lower resistance than the ones on the chemical vapor deposition diamond seeds, which could be comparable with the lowest values reported. After the thin diamond layers were grown with and without addition of O2, the carrier mobility in the conductive channel increased to almost 80 cm2 V−1 s−1 under O2 contained condition, much higher than those without O2 incorporation. The ionization scattering is dominant to the carrier mobility compared with the surface scattering. The higher carrier mobility is attributed to the lower impurity density in the epitaxial layer, which is because the active O atoms could purify the epitaxial layer by removing or reducing Si- and N-related impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. El-Hajj H, Denisenko A, Bergmaier A, Dollinger G, Kubovic M, Kohn E (2008) Characteristics of boron δ-doped diamond for electronic applications. Diam Relat Mater 17(4–5):409–414

    Article  Google Scholar 

  2. Ueda K, Kasu M, Yamauchi Y et al (2006) Diamond FET using high-quality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz. IEEE Electron Device Lett 27(7):570–572

    Article  Google Scholar 

  3. Russell S, Sharabi S, Tallaire A, Moran DAJ (2015) RF operation of hydrogen-terminated diamond field effect transistors: a comparative study. IEEE Trans Electron Devices 62(3):751–756

    Article  Google Scholar 

  4. Banal RG, Imura M, Liu J, Koide Y (2016) Structural properties and transfer characteristics of sputter deposition AlN and atomic layer deposition Al2O3 bilayer gate materials for H-terminated diamond field effect transistors. J Appl Phys 120(11):115307-1–115307-7

    Article  Google Scholar 

  5. Looi HJ, Jackman RB, Foord JS (1998) High carrier mobility in polycrystalline thin film diamond. Appl Phys Lett 72(3):353–355

    Article  Google Scholar 

  6. Maier F, Riedel M, Mantel B, Ristein J, Ley L (2000) Origin of surface conductivity in diamond. Phys Rev Lett 85(16):3472–3475

    Article  Google Scholar 

  7. Hirama K, Tsuge K, Sato S, Tetsuya T, Yoshikatsu J, Shintaro Y, Hiroshi K (2010) High-performance P-channel diamond metal-oxide-semiconductor field-effect transistors on H-terminated (111) surface. Appl Phys Express 3:044001-1–044001-3

    Article  Google Scholar 

  8. Kawarada H, Tsuboi H, Naruo T et al (2014) C–H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl Phys Lett 105(1):013510-1–013510-4

    Article  Google Scholar 

  9. Kitabayashi Y, Kudo T, Tsuboi H et al (2014) Normally-off C–H diamond MOSFETs with partial C–O channel achieving 2-kV breakdown voltage. IEEE Electron Device Lett 38(3):363–366

    Article  Google Scholar 

  10. Isberg J, Hammersberg J, Johansson E et al (2002) High carrier mobility in single-crystal plasma-deposited diamond. Science 297(5587):1670–1672

    Article  Google Scholar 

  11. Tallaire A, Achard J, Boussadi A et al (2014) High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates. Diam Relat Mater 41:34–40

    Article  Google Scholar 

  12. O’Brien JL (2007) Optical quantum computing. Science 318(5856):1567–1570

    Article  Google Scholar 

  13. Hirama K, Takayanagi H, Yamauchi S, Yang JH, Kawarada H, Umezawa H (2008) Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance. Appl Phys Lett 92:112107-1–112107-3

    Article  Google Scholar 

  14. Kubovic M, Kasu M, Kageshima H, Maeda F (2010) Electronic and surface properties of H-terminated diamond surface affected by NO2 gas. Diam Relat Mater 19(7–9):889–893

    Article  Google Scholar 

  15. Tordjman M, Weinfeld K, Kalish R (2017) Boosting surface charge-transfer doping efficiency and robustness of diamond withWO3 and ReO3. Appl Phys Lett 111:111601-1–111601-5

    Article  Google Scholar 

  16. Liu JL, Li CM, Guo JC et al (2013) Effect of atomic hydrogen bombardment on the surface conductivity of polycrystalline films. Appl Surf Sci 287:304–310

    Article  Google Scholar 

  17. Manfredotti C, Fizzotti F, Lo Giudice A, Manfredotti Ch, Castellina M, Bonino P, Vittone E (2008) A comprehensive study on hydrogenated diamond surfaces as obtained by using molecular hydrogen. Diam Relat Mater 17(1–10):1154–1158

    Article  Google Scholar 

  18. Piracha AH, Genevan K, Lau DWM, Stacey A, McGuinness LP, Tomljenovic-Hanic S, Prawer S (2016) Scalable fabrication of high-quality, ultra-thin single crystal diamond membrane windows. Nanoscale 8:6860–6865

    Article  Google Scholar 

  19. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31

    Article  Google Scholar 

  20. Hei LF, Zhao Y, Wei JJ, Liu JL, Li CM, Tang WZ, Lu FX (2016) Interface features of the HPHT Ib substrate and homoepitaxial CVD diamond layer. Diam Relat Mater 69:33–39

    Article  Google Scholar 

  21. Martineau PM, Lawson SC, Taylor A, Quinn SJ, Evans DJF, Crowder MJ (2004) Identification of synthetic diamond grown using chemical vapor deposition (CVD). Gems Gemol 40(1):2–25

    Article  Google Scholar 

  22. Song Z, Lu T, Su J et al (2016) Silicon-doped CVD synthetic diamond with photochromic effect. J Gems Gemmol 18(1):1–4

    Google Scholar 

  23. Lindblom J (2005) Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am Miner 90(2–3):428–440

    Article  Google Scholar 

  24. Liu JL, Chen LX, Zheng YT, Wang JJ, Feng ZH, Li CM (2017) Carrier transport characteristics of H-terminated diamond films prepared using molecular hydrogen and atomic hydrogen. Int J Min Metall Mater 24(7):850–856

    Article  Google Scholar 

  25. Wade T, Geis MW, Fedynyshyn TH et al (2017) Effect of surface roughness and H–termination chemistry on diamond’s semiconducting surface conductance. Diam Relat Mater 76:79–85

    Article  Google Scholar 

  26. Alomari M, Dipalo M, Rossi S et al (2011) Diamond overgrownInAlN/GaN HEMT. Diam Relat Mater 20(4):604–608

    Article  Google Scholar 

  27. Tsukazaki A, Ohtomo A, Onuma T et al (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46

    Article  Google Scholar 

  28. Liou Y, Inspektor A, Weimer R, Knight D, Messier R (1990) The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition. J Mater Res 5(11):2305–2312

    Article  Google Scholar 

  29. Tallaire A, Achard J, Silva F, Sussmann RS, Gicquel A, Rzepka E (2004) Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Phys Status Solidi (a) 201(11):2419–2424

    Article  Google Scholar 

  30. Liang Q, Yan C, Meng Y, Lai J, Krasnicki S, Mao H, Hemley RJ (2009) Recent advances in high-growth rate single-crystal CVD diamond. Diam Relat Mater 18(10):698–703

    Article  Google Scholar 

  31. Sato H, Kasu M (2012) Electronic properties of H-terminated diamond during NO2 and O3 adsorption and desorption. Diam Relat Mater 24:99–103

    Article  Google Scholar 

  32. Vardi A, Tordjman M, del Alamo JA (2014) A diamond: H/MoO3 MOSFET. IEEE Electron Device Lett 35(12):1320–1322

    Article  Google Scholar 

  33. Crawford KG, Cao L, Qi D et al (2016) Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability. Appl Phys Lett 108:042103-1–042103-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (No. 51402013) and the National Key Research and Development Program of China (No. 2016YFE0133200) and European Union’s Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (No. 734578). The SIMS experiment was supported in the Nano-X experiment cooperation Project (H008-2017) from Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO). The authors deeply appreciate their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.L., Zheng, Y.T., Lin, L.Z. et al. Surface conductivity enhancement of H-terminated diamond based on the purified epitaxial diamond layer. J Mater Sci 53, 13030–13041 (2018). https://doi.org/10.1007/s10853-018-2579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2579-7

Keywords

Navigation