Skip to main content

Advertisement

Log in

Design of a low-alloy high-strength and high-toughness martensitic steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500°C and 700°C, M7C3 exits below 720°C, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280°C, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Krauss, Deformation and fracture in martensitic carbon steels tempered at low temperatures, Metall. Mater. Trans. B, 32(2001), p. 205.

    Article  Google Scholar 

  2. M. Saeglitz and G. Krauss, Deformation, fracture, and mechanical properties of low-temperature-tempered martensite in SAE 43xx steels, Metall. Mater. Trans. A, 28(1997), p. 377.

    Article  Google Scholar 

  3. L.Y. Li, Y. Wang, T. Han, and C.W. Li, Microstructure and embrittlement of the fine-grained heat-affected zone of ASTM4130 steel, Int. J. Miner. Metall. Mater., 18(2011), No. 4, p. 419.

    Article  CAS  Google Scholar 

  4. Y.W. Gao, T.F. Jing, G.Y. Qiao, J.K. Yu, T.S. Wang, Q. Li, X.Y. Song, S.Q. Wang, and H. Gao, Microstructural evolution and tensile properties of low-carbon steel with martensitic microstructure during warm deforming and annealing, J. Univ. Sci. Technol. Beijing, 15(2008), No. 3, p. 245.

    Article  CAS  Google Scholar 

  5. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong, Effect of microstructure refinement on the strength and toughness of low alloy martensitic steel, J. Mater. Sci. Technol., 23(2007), p. 659.

    CAS  Google Scholar 

  6. S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of block size on the strength of lath martensite in low carbon steels, Mater. Sci. Eng. A, 438–440(2006), p. 237.

    Google Scholar 

  7. L.J. Wang, Q.W. Cai, H.B. Wu, and W. Yu, Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 543.

    Article  CAS  Google Scholar 

  8. J. Chakraborty, P.P. Chattopadhyay, D. Bhattacharjee, and I. Manna, Microstructural refinement of bainite and martensite for enhanced strength and toughness in high-carbon low-alloy steel, Metall. Mater. Trans. A, 41(2010), p. 2871.

    Article  Google Scholar 

  9. M.Y. Liu, B. Shi, C. Wang, S.K. Ji, X. Cai, and H.W. Song, Normal Hall-Petch behavior of mild steel with submicron grains, Mater. Lett., 57(2003), p. 2798.

    Article  CAS  Google Scholar 

  10. H.J. Rack, Age hardening-grain size relationships in 18Ni maraging steels, Mater. Sci. Eng. A, 34(1978), p. 263.

    Article  CAS  Google Scholar 

  11. R. Ishibashi, H. Arakawa, T. Abe, and Y. Aono, Tensile strength of austenitic stainless steels with grain refinement by mechanical milling, ISIJ Int., 40(2000), Suppl., p. S169.

    Article  CAS  Google Scholar 

  12. B. Hwang, T.H. Lee, and S.J. Kim, Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels, Met. Mater. Int., 16(2010), No. 6, p. 905.

    Article  CAS  Google Scholar 

  13. A. Di Schino and J.M. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel, Mater. Lett., 57(2003), p. 3182.

    Article  Google Scholar 

  14. C.Y. Zhang, Q.F. Wang, J.X. Ren, R.X. Li, M.Z. Wang, F.C. Zhang, and Z.S. Yan, Effect of microstructure on the strength of 25CrMo48V martensitic steel tempered at different temperature and time, Mater. Des., 36(2012), p. 220.

    Article  CAS  Google Scholar 

  15. Z.M. Shi, K. Liu, M.Q. Wang, J. Shi, H. Dong, J. Pu, B. Chi, Y.S. Zhang, and J. Li, Effect of tensile deformation of austenite on the morphology and strength of lath martensite, Met. Mater. Int., 18(2012), No. 2, p. 317.

    Article  CAS  Google Scholar 

  16. P. Berthod, P. Lemoine, and L. Aranda, Experimental and thermodynamic study of nickel-based alloys containing chromium carbides: Part I. Study of the Ni-30wt% Cr-xC system over the [0–2.0wt% C] range, Calphad, 32(2008), p. 485.

    Article  CAS  Google Scholar 

  17. V. Kneževi J. Balun, G. Sauthoff, G. Inden, and A. Schneider, Design of martensitic/ferritic heat-resistant steels for application at 650° with supporting thermodynamic modelling, Mater. Sci. Eng. A, 477(2008), p. 334.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-jun Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Yj., Ren, Xp., Yang, Wc. et al. Design of a low-alloy high-strength and high-toughness martensitic steel. Int J Miner Metall Mater 20, 733–740 (2013). https://doi.org/10.1007/s12613-013-0791-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-013-0791-7

Keywords

Navigation