Skip to main content
Log in

Fabrication of tungsten films by metallorganic chemical vapor deposition

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Tungsten films growing on copper substrates were fabricated by metallorganic chemical vapor deposition (MOCVD). The chemical purity, crystallographic phase, cross-sectional texture, and resistivity of the deposited films both before and after annealing treatment were investigated by X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and four-point probe method. It is found that the films deposited at 460°C are metastable β-W with (211) orientation and can change into α-W when annealed in high-purity hydrogen atmosphere at high temperature. There are small amounts of C and O in the films, and the W content of the films increases with increasing deposition temperature and also goes up after annealing in high-purity hydrogen atmosphere. The films have columnar microstructures and the texture evolution during their growth on copper substrates can be divided into three stages. The resistivity of the as-deposited films is in the range of 87–104 μΩ·cm, and low resistivity is obtained after annealing in high-purity hydrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Smith, K. Aouadi, J. Collins, E. van der Vegt, M.T. Basso, M. Juhel, and S. Pokrant, Low resistivity tungsten for contact metallization, Microelectron. Eng., 82(2005), No.3–4, p.261.

    Article  CAS  Google Scholar 

  2. H. Körner, E. Bertagnolli, and I. Maier, Contact barrier application of selective CVD-tungsten in a bipolar device, Appl. Surf. Sci., 38(1989), No.1–4, p.497.

    Article  Google Scholar 

  3. S. Schmidbauer, J. Hahn, A. Buerke, F. Jakubowski, O. Storbeck, Y.W. Ting, T. Schuster, and J. Faul, Interface optimization for poly silicon/tungsten gates, Microelectron. Eng., 85(2008), No.10, p.2037.

    Article  CAS  Google Scholar 

  4. R. Pantel, H. Wehbe-Alause, S. Jullian, and L.F.T. Kwakman, Analytical transmission electron microscopy observation of aluminium-tungsten interaction in thermally stressed Al/Ti/W/TiN interconnections, Microelectron. Eng., 64(2002), No.1–4, p.91.

    Article  CAS  Google Scholar 

  5. Y.R. Niu, X.B. Zheng, H. Ji, L.J. Qi, C.X. Ding, J.L. Chen, and G.N. Luo, Microstructure and thermal property of tungsten coatings prepared by vacuum plasma spraying technology, Fusion Eng. Des., 85(2010), No.7–9, p.1521.

    Article  CAS  Google Scholar 

  6. A. Marcu, C.M. Ticoş, C. Grigoriu, I. Jepu, C. Porosnicu, A.M. Lungu, and C.P. Lungu, Simultaneous carbon and tungsten thin film deposition using two thermionic vacuum arcs, Thin Solid Films, 519(2011), No.12, p.4074.

    Article  CAS  Google Scholar 

  7. G.S. Chen, L.C. Yang, H.S. Tian, and C.S. Hsu, Evaluating substrate bias on the phase-forming behavior of tungsten thin films deposited by diode and ionized magnetron sputtering, Thin Solid Films, 484(2005), No.1–2, p.83.

    Article  CAS  Google Scholar 

  8. P. Paris, M. Aints, M. Laan, M. Kiisk, J. Likonen, J. Kolehmainen, and S. Tervakangas, Laser ablation of thin tungsten layers deposited on carbon substrate, Fusion Eng. Des., 84(2009), No.7–11, p.1465.

    Article  CAS  Google Scholar 

  9. H. Nakajima, T. Nohira, R. Hagiwara, K. Nitta, S. Inazawa, and K. Okada, Electrodeposition of metallic tungsten films in ZnCl2-NaCl-KCl-KF-WO3 melt at 250°C, Electrochim. Acta, 53(2007), p.24.

    Article  CAS  Google Scholar 

  10. K.J. Kuijlaars, C.R. Kleijn, and H.E.A. van den Akker, Modeling of selective tungsten low-pressure chemical vapor deposition, Thin Solid Films, 290–291(1996), p.406.

    Article  Google Scholar 

  11. Y. Pauleau, Chemical vapour deposition of tungsten films for metallization of integrated circuits, Thin Solid Films, 122(1984), No.3, p.243.

    Article  CAS  Google Scholar 

  12. J. Haigh, G. Burkhardt, and K. Blake, Thermal decomposition of tungsten hexacarbonyl in hydrogen, the production of thin tungsten-rich layers, and their modification by plasma treatment, J. Cryst. Growth, 155(1995), No.3–4, p.266.

    Article  CAS  Google Scholar 

  13. K.A. Gesheva, T.A. Krisov, U.I. Simkov, and G.D. Beshkov, Deposition and study of CVD-tungsten and molybdenum thin films and their impact on microelectronics technology, Appl. Surf. Sci., 73(1993), p.86.

    Article  CAS  Google Scholar 

  14. H.M. Huang and X.M. Chen, On the β tungsten to α tungsten transformation, J. Cent. South Inst. Miner. Metall., 18(1987), No.4, p.459.

    CAS  Google Scholar 

  15. F. Zaera, Tungsten hexacarbonyl thermal decomposition on Ni(100) surfaces, J. Phys. Chem., 96(1992), p.4609.

    Article  CAS  Google Scholar 

  16. M.C. Benjamin, R.J. Hillard, and J.O. Borland, Ultra-shallow junction (USJ) sheet resistance measurements with a non-penetrating four point probe, Nucl. Instrum. Methods Phys. Res. Sect. B, 237(2005), p.351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-pu Li.

Additional information

This work was financially supported by the National High-Tech Research and Development Program of China (No.2009AA03Z116).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Li, Jp., Jia, Cc. et al. Fabrication of tungsten films by metallorganic chemical vapor deposition. Int J Miner Metall Mater 19, 1149–1153 (2012). https://doi.org/10.1007/s12613-012-0684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-012-0684-1

Keywords

Navigation