Skip to main content
Log in

Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron microscopy, and electron backscattering diffraction. The coarse-grained region of the heat-affected zone consists of predominantly bainite and a small proportion of acicular ferrite. Bainite packets are separated by high angle boundaries. Acicular ferrite laths or plates in the coarse-grained region of the heat-affected zone formed prior to bainite packets partition austenite grains into many smaller and separate areas, resulting in fine-grained mixed microstructures. Electron backscattering diffraction analysis indicates that the average crystallographic grain size of the coarse-grained region of the heat-affected zone reaches 6–9 μm, much smaller than that of austenite grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia and R.W.K. Honeycombe, Steels Microstructures and Properties, 3rd ed., Elsevier Ltd., Oxford, 2006, p.152.

    Google Scholar 

  2. V. Pancholi, M. Krishnan, I.S. Samajdar, et al., Self-accommodation in the bainitic microstructure of ultra-high-strength steel, Acta Mater., 56(2008), p.2037.

    Article  CAS  Google Scholar 

  3. I.A. Yakubtsov, P. Poruks, and J.D. Boyd, Microstructure and mechanical properties of bainitic low carbon high strength plate steels, Mater. Sci. Eng. A, 480(2008), p.109.

    Article  Google Scholar 

  4. M. KarlÍka, P. Haušilda, C. Prioulb, and M. Stöger-Pollachc, Microstructure of low alloyed steel close to the fracture surface, Mater. Sci. Eng. A, 462(2007), p.183.

    Article  Google Scholar 

  5. A.M. Guo, S.R. Li, J. Guo, et al., Effect of zirconium addition on the impact toughness of the heat affected zone in a high strength low alloy pipeline steel, Mater. Charact., 59(2008), p.134.

    Article  CAS  Google Scholar 

  6. K.M. Wu, Z.G. Li, A.M. Guo, et al., Microstructure evolution in a low carbon Nb-Ti microalloyed steel, ISIJ Int., 46(2006), p.161.

    Article  Google Scholar 

  7. K.M. Wu, M. Kagayama, and M. Enomoto, Kinetics of ferrite transformation in an Fe-0.28mass%C-3mass%Mo alloy, Mater. Sci. Eng. A, 343(2003), p.143.

    Article  Google Scholar 

  8. M. Enomoto, N. Maruyama, K.M. Wu, and T. Tarui, Alloying element accumulation at ferrite/austenite boundaries below the time-temperature-transformation diagram bay in an Fe-C-Mo alloy, Mater. Sci. Eng. A, 343(2003), p.151.

    Article  Google Scholar 

  9. H. Mabuchi, R. Uemori, and M. Fujioka, The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ Int., 36(1996), p.1406.

    Article  CAS  Google Scholar 

  10. J.M. Gregg and H.K.D.H. Bhadeshia, Solid-state nucleation of acicular ferrite on minerals added to molten steel, Acta Mater., 45(1997), p.739.

    Article  CAS  Google Scholar 

  11. J.H. Shim, Y.W. Cho, S.H. Chung, et al., Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel, Acta Mater., 47(1999), p.2751.

    Article  CAS  Google Scholar 

  12. J.H. Shim, Y.J. OH, J.Y. Suh, et al., Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater., 49(2001), p.2115.

    Article  CAS  Google Scholar 

  13. M. Enomoto, Nucleation of phase transformations at intragranular inclusions in steel, Met. Mater. Int., 4(1998), p.115.

    CAS  Google Scholar 

  14. S. Zhang, N. Hattori, M. Enomoto, and T. Tarui, Ferrite nucleation at ceramic/austenite interfaces, ISIJ Int., 36(1996), p.1301.

    Article  CAS  Google Scholar 

  15. Z. Zhang and R.A. Farrar, Role of nonmetallic inclusions in formation of acicular ferrite in low alloy weld metals, Mater. Sci. Technol., 12(1996), p.237.

    CAS  Google Scholar 

  16. M. Enomoto, K.M. Wu, Y. Inagawa, T. Murakami, and S. Nanba, Three-dimensional observation of ferrite pate in low carbon steel weld, ISIJ Int., 45(2005), p.756.

    Article  CAS  Google Scholar 

  17. K.M. Wu, Y. Inagawa, and M. Enomoto, Three-dimensional morphology of ferrite formed in association with inclusions in low-carbon steel, Mater. Charact., 52(2004), p.121.

    Article  CAS  Google Scholar 

  18. X.L. Wan, R. Wei, and K.M. Wu, Effect of acicular ferrite formation on grain refinement in the coarse-grained region of the heat-affected zone, Mater. Charact., 61(2010), p.726.

    Article  CAS  Google Scholar 

  19. K.M. Wu, Three-dimensional analysis of acicular ferrite in a low-carbon steel containing titanium, Scripta Mater., 54(2006), Spec. Iss., p.569.

    Article  CAS  Google Scholar 

  20. L. Cheng and K.M. Wu, New insights into intragranular ferrite in a low-carbon low-alloy steel, Acta Mater., 57(2009), p.3754.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-ming Wu.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No.50734004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, R., Shang, Cj. & Wu, Km. Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels. Int J Miner Metall Mater 17, 737–741 (2010). https://doi.org/10.1007/s12613-010-0382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-010-0382-9

Keywords

Navigation