Skip to main content
Log in

L’ostéoporose chez l’homme âgé

Osteoporosis in aging men

  • Article de Synthèse / Review Article
  • Published:
Les cahiers de l'année gérontologique

Résumé

La maladie ostéoporotique est un problème de santé publique pris en compte depuis une trentaine d’années chez la femme. Elle est traitée comme un risque au cours des sixième et septième décennies et comme une fatalité chez les sujets âgés. L’allongement progressif de l’espérance de vie a fait émerger la nécessité de prendre en considération les conséquences vitales et fonctionnelles des fractures ostéoporotiques des hommes de plus de 80 ans. L’ostéoporose contribue au processus de fragilisation qui conduit à la dépendance en association avec les autres problèmes de santé publique que sont les maladies cardiovasculaires et les démences. Un ensemble cohérent de données épidémiologiques montre que les courbes d’incidence de l’ostéoporose augmentent exponentiellement avec l’âge dans les deux sexes mais sont retardées d’une dizaine d’années chez les hommes. La démonstration de la réduction de la mortalité liée à un traitement par l’acide zolédronique après une fracture de hanche est venue conforter l’intérêt d’un traitement anti-ostéoporotique actif chez les sujets âgés des deux sexes. En milieu gériatrique, la problématique de la prise en charge du risque ostéoporotique chez l’homme se décline de trois façons: 1) la conduite à tenir devant une fracture incidente qui est souvent l’expression itérative de la maladie ostéoporotique; 2) la découverte de séquelles radiologiques de fractures antérieures, particulièrement de fractures vertébrales décrites sur une radiographie du thorax demandée pour un autre motif; 3) une masse osseuse basse densitométrique qui est souvent la règle au col du fémur dans cette tranche de population. L’évaluation du rapport coût/bénéfice des traitements de l’ostéoporose doit être pondérée par l’appréciation de l’espérance de vie probable et par les limitations d’observance imposées par une polymédicamentation souvent extensive.

Abstract

Since the first publication by Albright in 1941, osteoporosis has been widely considered as a female problem of public health. The regular increase of life expectancy has shown the rise of male osteoporosis especially in the population over 80 years old. The primary goal of treatment is to delay the fracture cascade that leads to fragility process and organic dependence. In geriatric practices, aging male osteoporosis may be considered in three ways: 1) evolutionary osteoporosis with incident fracture; 2) incidental diagnosis of vertebral fracture; 3) diagnosis of low bone mass that is highly prevalent in this population. The choice of the right treatment must be balanced by the analysis of cost/effectiveness ratio based on probable life expectancy and on polymedication very common in aging men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Baron JA, Karagas M, Barrett J, et al (1996) Basic epidemiology of fractures of the upper and lower limb among Americans over 65 years of age. Epidemiology 7:612–618

    Article  PubMed  CAS  Google Scholar 

  2. Melton LJ 3rd, Chrischilles EA, Cooper C, et al (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7:1005–1010

    PubMed  Google Scholar 

  3. Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN (1996) Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol 144:255–263

    PubMed  CAS  Google Scholar 

  4. Looker AC, Orwoll ES, Johnston CC Jr, et al (1997) Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res 12:1761–1768

    Article  PubMed  CAS  Google Scholar 

  5. Looker AC, Melton LJ, Harris TB, et al (2009) Prevalence and trends in low femur bone density among older US adults: NHANES 2005–2006 compared with NHANES III dagger. J Bone Miner Res [Epub ahead of print]

  6. Scholtissen S, Guillemin F, Bruyere O, et al (2009) Assessment of determinants for osteoporosis in elderly men. Osteoporos Int 20:1157–1166

    Article  PubMed  CAS  Google Scholar 

  7. Hannan MT, Felson DT, Anderson JJ (1992) Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res 7:547–553

    Article  PubMed  CAS  Google Scholar 

  8. Kanis J, Johnell O, Gullberg B, et al (1999) Risk factors for hip fracture in men from southern Europe: the MEDOS study. Mediterranean Osteoporosis Study. Osteoporos Int 9:45–54

    Article  PubMed  CAS  Google Scholar 

  9. Barrett-Connor E, Mueller JE, von Muhlen DG, et al (2000) Low levels of estradiol are associated with vertebral fractures in older men, but not women: the Rancho Bernardo Study. J Clin Endocrinol Metab 85:219–223

    Article  PubMed  CAS  Google Scholar 

  10. Tenenhouse A, Joseph L, Kreiger N, et al (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11:897–904

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen TV, Center JR, Sambrook PN, Eisman JA (2001) Risk factors for proximal humerus, forearm, and wrist fractures in elderly men and women: the DUBBO Osteoporosis Epidemiology Study. Am J Epidemiol 153:587–595

    Article  PubMed  CAS  Google Scholar 

  12. Roy DK, O’Neill TW, Finn JD, et al (2003) Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 14:19–26

    Article  PubMed  CAS  Google Scholar 

  13. Mussolino ME, Madans JH, Gillum RF (2003) Bone mineral density and mortality in women and men: the NHANES I epidemiologic follow-up study. Ann Epidemiol 13:692–697

    Article  PubMed  Google Scholar 

  14. Schuit SC, van der Klift M, Weel AE, et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  PubMed  CAS  Google Scholar 

  15. Szulc P, Munoz F, Duboeuf F, et al (2005) Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int 16:1184–1192

    Article  PubMed  Google Scholar 

  16. Cawthon PM, Ewing SK, McCulloch CE, et al (2009) Loss of hip bone mineral density in older men: the osteoporotic fractures in men (MrOS) Study. J Bone Miner Res [Epub ahead of print]

  17. Moayyeri A, Luben RN, Bingham SA, et al (2008) Measured height loss predicts fractures in middle-aged and older men and women: the EPIC-Norfolk prospective population study. J Bone Miner Res 23:425–432

    Article  PubMed  Google Scholar 

  18. Pinheiro MM, Ciconelli RM, Martini LA, Ferraz MB (2009) Clinical risk factors for osteoporotic fractures in Brazilian women and men: the Brazilian Osteoporosis Study (BRAZOS). Osteoporos Int 20:399–408

    Article  PubMed  CAS  Google Scholar 

  19. Jacobsen SJ, Goldberg J, Miles TP, et al (1990) Hip fracture incidence among the old and very old: a population-based study of 745,435 cases. Am J Public Health 80:871–873

    Article  PubMed  CAS  Google Scholar 

  20. Ooms ME, Vlasman P, Lips P, et al (1994) The incidence of hip fractures in independent and institutionalized elderly people. Osteoporos Int 4:6–10

    Article  PubMed  CAS  Google Scholar 

  21. Hannan EL, Magaziner J, Wang JJ, et al (2001) Mortality and locomotion six months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. Jama 285:2736–2742

    Article  PubMed  CAS  Google Scholar 

  22. Berry SD, Samelson EJ, Bordes M, et al (2009) Survival of aged nursing home residents with hip fracture. J Gerontol A Biol Sci Med Sci 64:771–777

    PubMed  Google Scholar 

  23. Cooper C, Atkinson EJ, Jacobsen SJ, et al (1993) Population-based study of survival after osteoporotic fractures. Am J Epidemiol 137:1001–1005

    PubMed  CAS  Google Scholar 

  24. Hasserius R, Karlsson MK, Jonsson B, et al (2005) Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly: a 12- and 22-year follow-up of 257 patients. Calcif Tissue Int 76:235–242

    Article  PubMed  CAS  Google Scholar 

  25. Bliuc D, Nguyen ND, Milch VE, et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama 301:513–521

    Article  PubMed  CAS  Google Scholar 

  26. Cauley JA, Thompson DE, Ensrud KC, et al (2000) Risk of mortality following clinical fractures. Osteoporos Int 11:556–561

    Article  PubMed  CAS  Google Scholar 

  27. Center JR, Nguyen TV, Schneider D, et al (1999) Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 353:878–882

    Article  PubMed  CAS  Google Scholar 

  28. Pongchaiyakul C, Nguyen ND, Jones G, et al (2005) Asymptomatic vertebral deformity as a major risk factor for subsequent fractures and mortality: a long-term prospective study. J Bone Miner Res 20:1349–1355

    Article  PubMed  Google Scholar 

  29. Trone DW, Kritz-Silverstein D, von Muhlen DG, et al (2007) Is radiographic vertebral fracture a risk factor for mortality? Am J Epidemiol 166:1191–1197

    Article  PubMed  Google Scholar 

  30. Rolland Y, Abellan van Kan G, Benetos A, et al (2008) Frailty, osteoporosis and hip fracture: causes, consequences and therapeutic perspectives. J Nutr Health Aging 12:335–346

    Article  PubMed  CAS  Google Scholar 

  31. Nurmi-Luthje I, Luthje P, Kaukonen JP, et al (2009) Postfracture prescribed calcium and vitamin D supplements alone or, in females, with concomitant anti-osteoporotic drugs is associated with lower mortality in elderly hip fracture patients: a prospective analysis. Drugs Aging 26:409–421

    Article  PubMed  CAS  Google Scholar 

  32. Lyles KW, Colon-Emeric CS, Magaziner JS, et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809

    Article  PubMed  CAS  Google Scholar 

  33. Colon-Emeric CS, Mesenbrink P, Lyles KW, et al (2009) Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J Bone Miner Res [Epub ahead of print]

  34. Kanis JA, McCloskey EV, Johansson H, et al (2008) Case finding for the management of osteoporosis with FRAX: assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408

    Article  PubMed  CAS  Google Scholar 

  35. Reeve J, Lunt M, Felsenberg D, et al (2003) Determinants of the size of incident vertebral deformities in European men and women in the sixth to ninth decades of age: the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 18:1664–1673

    Article  PubMed  CAS  Google Scholar 

  36. Mellstrom D, Johnell O, Ljunggren O, et al (2006) Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21:529–535

    Article  PubMed  Google Scholar 

  37. Broussard DL, Magnus JH (2004) Risk assessment and screening for low bone mineral density in a multi-ethnic population of women and men: does one approach fit all? Osteoporos Int 15:349–360

    Article  PubMed  Google Scholar 

  38. Bolland MJ, Barber PA, Doughty RN, et al (2008) Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ 336:262–266

    Article  PubMed  CAS  Google Scholar 

  39. Penning-van Beest FJ, Goettsch WG, Erkens JA, Herings RM (2006) Determinants of persistence with bisphosphonates: a study in women with postmenopausal osteoporosis. Clin Ther 28:236–242

    Article  PubMed  CAS  Google Scholar 

  40. Bone HG, Adami S, Rizzoli R, et al (2000) Weekly administration of alendronate: rationale and plan for clinical assessment. Clin Ther 22:15–28

    Article  PubMed  CAS  Google Scholar 

  41. Black DM, Delmas PD, Eastell R, et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  PubMed  CAS  Google Scholar 

  42. Araujo AB, Travison TG, Leder BZ, McKinlay JB (2008) Correlations between serum testosterone, estradiol, and sex hormone-binding globulin and bone mineral density in a diverse sample of men. J Clin Endocrinol Metab 93:2135–2141

    Article  PubMed  CAS  Google Scholar 

  43. Baulieu EE, Thomas G, Legrain S, et al (2000) Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci USA 97:4279–4284

    Article  PubMed  CAS  Google Scholar 

  44. Gotherstrom G, Svensson J, Koranyi J, et al (2001) A prospective study of five years of GH replacement therapy in GH-deficient adults: sustained effects on body composition, bone mass, and metabolic indices. J Clin Endocrinol Metab 86:4657–4665

    Article  PubMed  CAS  Google Scholar 

  45. Nass R, Pezzoli SS, Oliveri MC, et al (2008) Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Ann Intern Med 149:601–611

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Weryha.

About this article

Cite this article

Weryha, G., Weryha, B., Rancier, M. et al. L’ostéoporose chez l’homme âgé. cah. année gerontol. 1, 188–194 (2009). https://doi.org/10.1007/s12612-009-0028-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12612-009-0028-6

Mots clés

Keywords

Navigation