Skip to main content

Advertisement

Log in

The Role of Obesity and Inflammation in Breast Cancer Recurrence

  • Review
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Purpose of review

The purpose of this study is to summarize the latest findings regarding the impact of obesity and inflammation on breast cancer recurrence risk.

Recent Findings

Obesity is a risk factor for breast cancer recurrence and cancer-specific mortality. Biologic mechanisms that drive this association vary by tumor subtype and include a dysfunctional tumor microenvironment and systemic inflammation. We discuss the impact of obesity on systemic therapy resistance and review current evidence supporting pharmacological, surgical, and lifestyle modifications for addressing obesity in the context of improving breast cancer survivorship.

Summary

Obesity is associated with poorer survival in breast cancer. Risk stratification by tumor and host-specific characteristics can help identify adjunctive interventions to improve breast cancer outcomes in patients with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

Abbreviations

AI:

Aromatase inhibitors

BC:

Breast cancer

BMI:

Body mass index

CI:

Confidence interval

DFS:

Disease-free survival

HR:

Hazard ratio

HER2:

Human epidermal growth factor receptor 2

IGF-1:

Insulin-like growth factor-1

IDFS:

Invasive disease–free survival

MetS:

Metabolic syndrome

OS:

Overall survival

pCR:

Pathological complete response

EFS:

Relapse-free survival

RR:

Risk ratio

TME:

Tumor microenvironment

TNF-α:

Tumor necrosis factor-α

T2DM:

Type 2 diabetes mellitus

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cancer of the Breast (Female) – Cancer Stat Facts SEER. [cited 2023 Sept 20]. Available from: https://seer.cancer.gov/statfacts/html/breast.html

  2. • Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133:155217. https://doi.org/10.1016/j.metabol.2022.155217This article highlights the updated incidence and prevalence of obesity worldwide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Overweight & Obesity Statistics - NIDDK [cited 2023 Sept 20]. Available from: https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity

  4. Nishida C, Ko GT, Kumanyika S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur J Clin Nutr. 2010;64(1):2–5. https://doi.org/10.1038/ejcn.2009.139.

    Article  CAS  PubMed  Google Scholar 

  5. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://doi.org/10.1136/bmj.i2156.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, Nigro O, et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(3):e213520. https://doi.org/10.1001/jamanetworkopen.2021.3520This meta-analysis provides an overview of cancer outcomes in obese patients and shows an association of obesity with increased mortality rate.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901–14. https://doi.org/10.1093/annonc/mdu042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blair CK, Wiggins CL, Nibbe AM, Storlie CB, Prossnitz ER, Royce M, et al. Obesity and survival among a cohort of breast cancer patients is partially mediated by tumor characteristics. NPJ Breast Cancer. 2019;5:33. https://doi.org/10.1038/s41523-019-0128-4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Olsson LT, Walens A, Hamilton AM, Benefield HC, Fleming JM, Carey LA, et al. Obesity and breast cancer metastasis across genomic subtypes. Cancer Epidemiol Biomarkers Prev. 2022;31(10):1944–51. https://doi.org/10.1158/1055-9965.EPI-22-0013This study reports the incidence of metastasis in obese patients with breast cancer and indicates an increased risk of metastatic recurrence in the setting of obesity.

    Article  PubMed  PubMed Central  Google Scholar 

  10. von Drygalski A, Tran TB, Messer K, Pu M, Corringham S, Nelson C, et al. Obesity is an independent predictor of poor survival in metastatic breast cancer: retrospective analysis of a patient cohort whose treatment included high-dose chemotherapy and autologous stem cell support. Int J Breast Cancer. 2011;2011:523276. https://doi.org/10.4061/2011/523276.

    Article  Google Scholar 

  11. • Saleh K, Carton M, Dieras V, Heudel PE, Brain E, D’Hondt V, et al. Impact of body mass index on overall survival in patients with metastatic breast cancer. Breast. 2021;55:16–24. https://doi.org/10.1016/j.breast.2020.11.014. This observational cohort study indicates that overweight and obesity are not associated with worse outcomes in women with metastatic breast cancer.

    Article  PubMed  Google Scholar 

  12. Barba M, Pizzuti L, Sperduti I, Natoli C, Gamucci T, Sergi D, et al. Body mass index and treatment outcomes in metastatic breast cancer patients treated with eribulin. J Cell Physiol. 2016;231(5):986–91. https://doi.org/10.1002/jcp.25213.

    Article  CAS  PubMed  Google Scholar 

  13. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–6. https://doi.org/10.1200/JCO.2016.67.4283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. • Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes et al. Obesity-induced changes in cancer cells and their microenvironment: mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol. 2023;6:S1044–579X(23)00076–7. https://doi.org/10.1016/j.semcancer.2023.05.002This study provides an overview of the progress of research regarding the impact of obesity on the tumor microenvironment and crosstalk with systemic metabolic signaling.

  15. Olson OC, Quail DF, Joyce JA. Obesity and the tumor microenvironment. Science. 2017;358(6367):1130–1. https://doi.org/10.1126/science.aao5801.

    Article  CAS  PubMed  Google Scholar 

  16. Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog. 2017;13(9):e1006480. https://doi.org/10.1371/journal.ppat.1006480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol. 2016;82(16):5039–48. https://doi.org/10.1128/AEM.01235-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90. https://doi.org/10.1038/s41574-018-0059-4.

    Article  CAS  PubMed  Google Scholar 

  19. •• Nguyen HL, Geukens T, Maetens M, Aparicio S, Bassez A, Borg A, et al. Obesity-associated changes in molecular biology of primary breast cancer. Nat Commun. 2023;14(1):4418. https://doi.org/10.1038/s41467-023-39996-zThis article provides an overview of several genomic alterations that are differentially prevalent in overweight or obese patients compared to lean patients as well as evidence supporting an ageing accelerating effect of obesity at the genetic level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2009;101(1):48–60. https://doi.org/10.1093/jnci/djn415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hetemäki N, Savolainen-Peltonen H, Tikkanen MJ, Wang F, Paatela H, Hämäläinen E, et al. Estrogen metabolism in abdominal subcutaneous and visceral adipose tissue in postmenopausal women. J Clin Endocrinol Metab. 2017;102(12):4588–95. https://doi.org/10.1210/jc.2017-01474.

    Article  PubMed  Google Scholar 

  22. Sun XZ, Zhou D, Chen S. Autocrine and paracrine actions of breast tumor aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. J Steroid Biochem Mol Biol. 1997;63(1–3):29–36. https://doi.org/10.1016/s0960-0760(97)00068-x.

    Article  CAS  PubMed  Google Scholar 

  23. Shen S, Iyengar NM. Insulin-lowering diets in metastatic cancer. Nutrients. 2022;14(17):3542. https://doi.org/10.3390/nu14173542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • De Santi M, Annibalini G, Marano G, Biganzoli G, Venturelli E, Pellegrini M, et al. Association between metabolic syndrome, insulin resistance, and IGF-1 in breast cancer survivors of DIANA-5 study. J Cancer Res Clin Oncol. 2023. https://doi.org/10.1007/s00432-023-04755-6This study describes the association between IGF-1 levels and indices of insulin resistance in breast cancer survivors which could be a potential guide for to test strategies that modulate IGF-1 levels.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Poloz Y, Stambolic V. Obesity and cancer, a case for insulin signaling. Cell Death Dis. 2015;6(12):e2037. https://doi.org/10.1038/cddis.2015.381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, Endogenous Hormones Breast Cancer Collaborative, et al. Group Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 2003;95(16):1218–26. https://doi.org/10.1093/jnci/djg022.

    Article  CAS  PubMed  Google Scholar 

  27. Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y, et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol. 2002;20(1):42–51. https://doi.org/10.1200/JCO.2002.20.1.42.

    Article  CAS  PubMed  Google Scholar 

  28. Pan K, Chlebowski RT, Mortimer JE, Gunter MJ, Rohan T, Vitolins MZ, et al. Insulin resistance and breast cancer incidence and mortality in postmenopausal women in the Women’s Health Initiative. Cancer. 2020;126(16):3638–47. https://doi.org/10.1002/cncr.33002.

    Article  CAS  PubMed  Google Scholar 

  29. • Ciminera AK, Shuck SC, Termini J. Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance. 2021;4(10):e202101159. https://doi.org/10.26508/lsa.202101159This article describes the role of hyperglycemia and insulin in promoting genomic instability which in turn is a potential mechanism for increasing cancer risk in metabolic disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Acevedo F, Walbaum B, Muñiz S, Petric M, Martínez R, Guerra C, et al. Obesity is associated with early recurrence on breast cancer patients that achieved pathological complete response to neoadjuvant chemotherapy. Sci Rep. 2022;12(1):21145. https://doi.org/10.1038/s41598-022-25043-2This study describes the association of obesity with breast cancer recurrence in the setting of pathologic complete response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev. 2022;41(3):627–47. https://doi.org/10.1007/s10555-022-10031-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Bergman R, Berko YA, Sanchez V, Sanders ME, Gonzalez-Ericsson PI, Arteaga CL, et al. Obesity and metabolic syndrome are associated with short-term endocrine therapy resistance in early ER + breast cancer. Breast Cancer Res Treat. 2023;197(2):307–17. https://doi.org/10.1007/s10549-022-06794-yThis study describes the association of obesity with endocrine therapy resistance and reports a 1.4-fold increased risk of treatment resistance in patients with metabolic syndrome.

    Article  CAS  PubMed  Google Scholar 

  33. Ewertz M, Jensen MB, Gunnarsdóttir KÁ, Højris I, Jakobsen EH, Nielsen D, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29(1):25–31. https://doi.org/10.1200/JCO.2010.29.7614.

    Article  PubMed  Google Scholar 

  34. Dignam JJ, Wieand K, Johnson KA, Fisher B, Xu L, Mamounas EP. Obesity, tamoxifen use, and outcomes in women with estrogen receptor-positive early-stage breast cancer. J Natl Cancer Inst. 2003;95(19):1467–76. https://doi.org/10.1093/jnci/djg060.

    Article  CAS  PubMed  Google Scholar 

  35. Pfeiler G, Königsberg R, Fesl C, Mlineritsch B, Stoeger H, Singer CF, et al. Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol. 2011;29(19):2653–9. https://doi.org/10.1200/JCO.2010.33.2585.

    Article  CAS  PubMed  Google Scholar 

  36. Sestak I, Distler W, Forbes JF, Dowsett M, Howell A, Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. J Clin Oncol. 2010;28(21):3411–5. https://doi.org/10.1200/JCO.2009.27.2021.

    Article  CAS  PubMed  Google Scholar 

  37. Ewertz M, Gray KP, Regan MM, Ejlertsen B, Price KN, Thürlimann B, et al. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the breast international group 1–98 trial. J Clin Oncol. 2012;30(32):3967–75. https://doi.org/10.1200/JCO.2011.40.8666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gelsomino L, Giordano C, Camera G, Sisci D, Marsico S, Campana A, et al. Leptin signaling contributes to aromatase inhibitor resistant breast cancer cell growth and activation of macrophages. Biomolecules. 2020;10(4):543. https://doi.org/10.3390/biom10040543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhardwaj P, Brown KA. Obese adipose tissue as a driver of breast cancer growth and development: update and emerging evidence. Front Oncol. 2021;30(11):638918. https://doi.org/10.3389/fonc.2021.638918.

    Article  CAS  Google Scholar 

  40. Pfeiler G, Königsberg R, Hadji P, Fitzal F, Maroske M, Dressel-Ban G, et al. Impact of body mass index on estradiol depletion by aromatase inhibitors in postmenopausal women with early breast cancer. Br J Cancer. 2013;109(6):1522–7. https://doi.org/10.1038/bjc.2013.499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Folkerd EJ, Dixon JM, Renshaw L, A’Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30(24):2977–80. https://doi.org/10.1200/JCO.2012.42.0273.

    Article  CAS  PubMed  Google Scholar 

  42. Rosner GL, Hargis JB, Hollis DR, Budman DR, Weiss RB, Henderson IC, et al. Relationship between toxicity and obesity in women receiving adjuvant chemotherapy for breast cancer: results from cancer and leukemia group B study 8541. J Clin Oncol. 1996;14(11):3000–8. https://doi.org/10.1200/JCO.1996.14.11.3000.

    Article  CAS  PubMed  Google Scholar 

  43. Matikas A, Foukakis T, Moebus V, Greil R, Bengtsson NO, Steger GG, et al. Dose tailoring of adjuvant chemotherapy for breast cancer based on hematologic toxicities: further results from the prospective PANTHER study with focus on obese patients. Ann Oncol. 2019;30(1):109–14. https://doi.org/10.1093/annonc/mdy475.

    Article  CAS  PubMed  Google Scholar 

  44. Griggs JJ, Mangu PB, Anderson H, Balaban EP, Dignam JJ, Hryniuk WM, et al. Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2012;30(13):1553–61. https://doi.org/10.1200/JCO.2011.39.9436.

    Article  PubMed  Google Scholar 

  45. LeVee A, Mortimer J. The challenges of treating patients with breast cancer and obesity. Cancers (Basel). 2023;15(9):2526. https://doi.org/10.3390/cancers15092526.

    Article  CAS  PubMed  Google Scholar 

  46. •• Desmedt C, Fornili M, Clatot F, Demicheli R, De Bortoli D, Di Leo A, et al. Differential benefit of adjuvant docetaxel-based chemotherapy in patients with early breast cancer according to baseline body mass index. J Clin Oncol. 2020;38(25):2883–91. https://doi.org/10.1200/JCO.19.01771This post hoc analysis of the adjuvant BIG 2-98 trial investigates the efficacy of docetaxel stratified by BMI, which demonstrated reduced DFS and OS in obese patients.

    Article  CAS  PubMed  Google Scholar 

  47. Ligorio F, Zambelli L, Fucà G, Lobefaro R, Santamaria M, Zattarin E, et al. Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Ther Adv Med Oncol. 2022;8(14):17588359221079124. https://doi.org/10.1177/17588359221079123.

    Article  CAS  Google Scholar 

  48. • Di Cosimo S, Porcu L, Agbor-Tarh D, Cinieri S, Franzoi MA, De Santis MC, et al. Effect of body mass index on response to neo-adjuvant therapy in HER2-positive breast cancer: an exploratory analysis of the NeoALTTO trial. Breast Cancer Res. 2020;22(1):115. https://doi.org/10.1186/s13058-020-01356-wThis post hoc analysis of the neoadjuvant NeoALTTO trial indicates an association between obesity and reduced pathologic complete response in patients with HER2+ BC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Martel S, Lambertini M, Agbor-Tarh D, Ponde NF, Gombos A, Paterson V, et al. Body mass index and weight change in patients with HER2-positive early breast cancer: exploratory analysis of the ALTTO BIG 2–06 trial. J Natl Compr Canc Netw. 2021;19(2):181–9. https://doi.org/10.6004/jnccn.2020.7606This post hoc analysis of the adjuvant ALTTO BIG2-06 trial examined the impact of BMI at BC diagnosis and weight change after 2 years on outcomes in patients with HER2+ early BC. Obesity and weight loss ≥5% was associated with significantly worse DFS.

    Article  CAS  PubMed  Google Scholar 

  50. Iyengar NM, Ligibel JA. Letter to the editor: lapatinib confounds post-hoc weight loss analysis in the ALTTO trial. J Natl Compr Canc Netw. 2022;20(1):xliv-xlv. https://doi.org/10.6004/jnccn.2021.7082.

  51. • Modi ND, Tan JQE, Rowland A, Koczwara B, Abuhelwa AY, Kichenadasse G, et al. The obesity paradox in early and advanced HER2 positive breast cancer: pooled analysis of clinical trial data. NPJ Breast Cancer. 2021;7(1):30. https://doi.org/10.1038/s41523-021-00241-9This pooled analysis indicates an obesity paradox in patients in metastatic HER2+ breast cancer where higher BMI was associated with improved survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rock CL, Flatt SW, Byers TE, Colditz GA, Demark-Wahnefried W, Ganz PA, et al. Results of the exercise and nutrition to enhance recovery and good health for you (ENERGY) trial: a behavioral weight loss intervention in overweight or obese breast cancer survivors. J Clin Oncol. 2015;33(28):3169–76. https://doi.org/10.1200/JCO.2015.61.1095.

  53. Rock CL, Pande C, Flatt SW, Ying C, Pakiz B, Parker BA, et al. Favorable changes in serum estrogens and other biologic factors after weight loss in breast cancer survivors who are overweight or obese. Clin Breast Cancer. 2013;13(3):188–95. https://doi.org/10.1016/j.clbc.2012.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Swisher AK, Abraham J, Bonner D, Gilleland D, Hobbs G, Kurian S, et al. Exercise and dietary advice intervention for survivors of triple-negative breast cancer: effects on body fat, physical function, quality of life, and adipokine profile. Support Care Cancer. 2015;23(10):2995–3003. https://doi.org/10.1007/s00520-015-2667-z.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Demark-Wahnefried W, Jones LW, Snyder DC, Sloane RJ, Kimmick GG, Hughes DC, et al. Daughters and mothers against breast cancer (DAMES): main outcomes of a randomized controlled trial of weight loss in overweight mothers with breast cancer and their overweight daughters. Cancer. 2014;120(16):2522–34. https://doi.org/10.1002/cncr.28761.

    Article  PubMed  Google Scholar 

  56. Goodwin PJ, Segal RJ, Vallis M, Ligibel JA, Pond GR, Robidoux A, et al. The LISA randomized trial of a weight loss intervention in postmenopausal breast cancer. NPJ Breast Cancer. 2020;21(6):6. https://doi.org/10.1038/s41523-020-0149-z.

    Article  CAS  Google Scholar 

  57. Demark-Wahnefried W, Morey MC, Sloane R, Snyder DC, Miller PE, Hartman TJ, et al. Reach out to enhance wellness home-based diet-exercise intervention promotes reproducible and sustainable long-term improvements in health behaviors, body weight, and physical functioning in older, overweight/obese cancer survivors. J Clin Oncol. 2012;30(19):2354–61. https://doi.org/10.1200/JCO.2011.40.0895.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Harrigan M, Cartmel B, Loftfield E, Sanft T, Chagpar AB, Zhou Y, et al. Randomized trial comparing telephone versus in-person weight loss counseling on body composition and circulating biomarkers in women treated for breast cancer: the lifestyle, exercise, and nutrition (LEAN) study. J Clin Oncol. 2016;34(7):669–76. https://doi.org/10.1200/JCO.2015.61.6375.

    Article  PubMed  Google Scholar 

  59. Pierce JP, Natarajan L, Caan BJ, Parker BA, Greenberg ER, Flatt SW, et al. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the women’s healthy eating and living (WHEL) randomized trial. JAMA. 2007;298(3):289–98. https://doi.org/10.1001/jama.298.3.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pakiz B, Flatt SW, Bardwell WA, Rock CL, Mills PJ. Effects of a weight loss intervention on body mass, fitness, and inflammatory biomarkers in overweight or obese breast cancer survivors. Int J Behav Med. 2011;18(4):333–41. https://doi.org/10.1007/s12529-010-9079-8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sheppard VB, Hicks J, Makambi K, Hurtado-de-Mendoza A, Demark-Wahnefried W, Adams-Campbell L. The feasibility and acceptability of a diet and exercise trial in overweight and obese black breast cancer survivors: The stepping STONE study. Contemp Clin Trials. 2016;46:106–13. https://doi.org/10.1016/j.cct.2015.12.005.

    Article  PubMed  Google Scholar 

  62. Chlebowski RT, Blackburn GL, Thomson CA, Nixon DW, Shapiro A, Hoy MK, et al. Dietary fat reduction and breast cancer outcome: interim efficacy results from the women’s intervention nutrition study. J Natl Cancer Inst. 2006;98(24):1767–76. https://doi.org/10.1093/jnci/djj494.

    Article  PubMed  Google Scholar 

  63. Goodwin PJ, Segal RJ, Vallis M, Ligibel JA, Pond GR, Robidoux A, et al. Randomized trial of a telephone-based weight loss intervention in postmenopausal women with breast cancer receiving letrozole: the LISA trial. J Clin Oncol. 2014;32(21):2231–9.

    Article  PubMed  Google Scholar 

  64. Villarini A, Pasanisi P, Traina A, Mano MP, Bonanni B, Panico S, et al. Lifestyle and breast cancer recurrences: the DIANA-5 trial. Tumori J. 2012;98(1):1–18.

    Article  CAS  Google Scholar 

  65. Bruno E, Krogh V, Gargano G, Grioni S, Bellegotti M, Venturelli E, et al. Adherence to dietary recommendations after one year of intervention in breast cancer women: the DIANA-5 trial. Nutrients. 2021;13(9):2990. https://doi.org/10.3390/nu13092990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prevention of breast cancer recurrence through weight control, diet, and physical activity intervention (PREDICOP) [cited 2023 Sept 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT02035631

  67. Rack B, Andergassen U, Neugebauer J, Salmen J, Hepp P, Sommer H, et al. The German SUCCESS C study – the first European lifestyle study on breast cancer. Breast Care (Basel). 2010;5(6):395–400. https://doi.org/10.1159/000322677.

    Article  PubMed  Google Scholar 

  68. •• Ligibel JA, Ballman KV, McCall LM, Goodwin PJ, Weiss A, Delahanty L, et al. Effect of a telephone-based weight loss intervention (WLI) on weight at 12-months in women with early breast cancer: results from the breast cancer weight loss (BWEL) trial. J Clin Oncol. 2023;41(16_suppl):12001–12001. This study abstract presented at ASCO 2023 reports a telephone-based weight-loss intervention that induced significant, clinically meaningful weight loss in patients with stage II or III breast cancer with overweight or obesity. Longer follow-up is required to evaluate whether the intervention improves disease outcomes in this patient population.

    Article  Google Scholar 

  69. Ligibel JA, Barry WT, Alfano CM, Hershman DL, Irwin ML, Neuhouser M, et al. The breast cancer weight loss (BWEL) trial: randomized phase III trial evaluating the role of weight loss in adjuvant treatment of overweight and obese women with early-stage breast cancer (Alliance A011401). J Clin Oncol. 2018;36(15_suppl):TPS598–TPS598.

    Article  Google Scholar 

  70. Pierce JP. Diet and breast cancer prognosis: making sense of the Women’s Healthy Eating and Living and women’s intervention nutrition study trials. Curr Opin Obstet Gynecol. 2009;21(1):86–91. https://doi.org/10.1097/gco.0b013e32831da7f2.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Iyengar NM, Jones LW. Development of exercise as interception therapy for cancer: a review. JAMA Oncol. 2019;5(11):1620–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. A study of the body’s response to exercise and a plant-based diet in overweight postmenopausal women with breast cancer [cited 2023 Sept 20]. Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04298086

  73. Cejuela M, Martin-Castillo B, Menendez JA, Pernas S. Metformin and breast cancer: where are we now? Int J Mol Sci. 2022;23(5):2705. https://doi.org/10.3390/ijms23052705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. • Bellerba F, Chatziioannou AC, Jasbi P, Robinot N, Keski-Rahkonen P, Trolat A, et al. Metabolomic profiles of metformin in breast cancer survivors: a pooled analysis of plasmas from two randomized placebo-controlled trials. J Transl Med. 2022;20(1):629. https://doi.org/10.1186/s12967-022-03809-6. This study investigated the metabolomic effects of metformin therapy in patients with BC and indicates changes in biochemical pathways implicated in cancer cell growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Coyle C, Cafferty FH, Vale C, Langley RE. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol. 2016;27(12):2184–95. https://doi.org/10.1093/annonc/mdw410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. • El-Attar AA, Ibrahim OM, Alhassanin SA, Essa ES, Mostafa TM. Effect of metformin as an adjuvant therapy to letrozole on estradiol and other biomarkers involved in the pathogenesis of breast cancer in overweight and obese postmenopausal women: a pilot study. Eur J Clin Pharmacol. 2023;79(2):299–309. https://doi.org/10.1007/s00228-022-03444-6This study investigated the effect of metformin on biomarkers associated with breast cancer recurrence and found improvement in prognostic biomarkers.

    Article  CAS  PubMed  Google Scholar 

  77. Patterson RE, Marinac CR, Sears DD, Kerr J, Hartman SJ, Cadmus-Bertram L, et al. The effects of metformin and weight loss on biomarkers associated with breast cancer outcomes. J Natl Cancer Inst. 2018Nov 1;110(11):1239–47. https://doi.org/10.1093/jnci/djy040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sonnenblick A, Agbor-Tarh D, Bradbury I, Di Cosimo S, Azim HA Jr, Fumagalli D, et al. Impact of diabetes, insulin, and metformin use on the outcome of patients with human epidermal growth factor receptor 2-positive primary breast cancer: analysis from the ALTTO phase III randomized trial. J Clin Oncol. 2017;35(13):1421–9. https://doi.org/10.1200/JCO.2016.69.7722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. •• Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, et al. Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: the MA.32 randomized clinical trial. JAMA. 2022;327(20):1963–73. https://doi.org/10.1001/jama.2022.6147This definitive trial investigated the efficacy of adjuvant metformin versus placebo in patients with primary breast cancer. Addition of metformin to standard breast cancer treatment did not improve invasive disease-free survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gallagher EJ, Kase NG, Bickell NA, LeRoith D. Metformin and cancer: is this the end? Endocr Pract. 2022;28(8):832–4. https://doi.org/10.1016/j.eprac.2022.06.005.

    Article  PubMed  Google Scholar 

  81. Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–56. https://doi.org/10.1016/j.cmet.2018.03.001.

    Article  CAS  PubMed  Google Scholar 

  82. Pi-Sunyer X, Astrup A, Fujioka K, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22. https://doi.org/10.1056/NEJMoa1411892.

    Article  CAS  PubMed  Google Scholar 

  83. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183.

    Article  CAS  PubMed  Google Scholar 

  84. Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity. N Engl J Med. 2022;387(3):205–16. https://doi.org/10.1056/NEJMoa2206038.

    Article  CAS  PubMed  Google Scholar 

  85. Ligumsky H, Wolf I, Israeli S, et al. The peptide-hormone glucagon-like peptide-1 activates cAMP and inhibits growth of breast cancer cells. Breast Cancer Res Treat. 2012;132(2):449–61. https://doi.org/10.1007/s10549-011-1585-0.

    Article  CAS  PubMed  Google Scholar 

  86. Iwaya C, Nomiyama T, Komatsu S, et al. Exendin-4, a glucagonlike peptide-1 receptor agonist, attenuates breast cancer growth by inhibiting NF-κB activation. Endocrinology. 2017;158(12):4218–32. https://doi.org/10.1210/en.2017-00461.

    Article  CAS  PubMed  Google Scholar 

  87. Martin-Castillo B, Pernas S, Dorca J, Álvarez I, Martínez S, Pérez-Garcia JM, et al. A phase 2 trial of neoadjuvant metformin in combination with trastuzumab and chemotherapy in women with early HER2-positive breast cancer: the METTEN study. Oncotarget. 2018;9(86):35687–704. https://doi.org/10.18632/oncotarget.26286.

    Article  PubMed  PubMed Central  Google Scholar 

  88. •• Huang J, Tong Y, Hong J, Huang O, Wu J, He J, et al. Neoadjuvant docetaxel, epirubicin, and cyclophosphamide with or without metformin in breast cancer patients with metabolic abnormality: results from the randomized phase II NeoMET trial. Breast Cancer Res Treat. 2023;197(3):525–33. https://doi.org/10.1007/s10549-022-06821-yThis trial investigated the efficacy of adding metformin to neoadjuvant chemotherapy in early breast cancer. Addition of metformin did not significantly improve pathological complete response rates.

    Article  CAS  PubMed  Google Scholar 

  89. • Yee D, Isaacs C, Wolf DM, Yau C, Haluska P, Giridhar KV, et al. Ganitumab and metformin plus standard neoadjuvant therapy in stage 2/3 breast cancer. NPJ Breast Cancer. 2021;7(1):131. https://doi.org/10.1038/s41523-021-00337-2This trial explores the efficacy of adding metformin and ganitumab to neoadjuvant chemotherapy in stage 2/3 breast cancer. Although an improved pathological complete response rate was observed, the trial did not meet the prespecified threshold for advancement to phase 3 testing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Topart P. Obesity surgery: which procedure should we choose and why? J Visc Surg. 2023;160(2S):S30–7. https://doi.org/10.1016/j.jviscsurg.2022.12.010.

    Article  CAS  PubMed  Google Scholar 

  91. Eisenberg D, Shikora SA, Aarts E, Aminian A, Angrisani L, Cohen RV, et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): indications for metabolic and bariatric surgery. Surg Obes Relat Dis. 2022;18(12):1345–56. https://doi.org/10.1016/j.soard.2022.08.013.

    Article  PubMed  Google Scholar 

  92. Mackenzie H, Markar SR, Askari A, Faiz O, Hull M, Purkayastha S, et al. Obesity surgery and risk of cancer. Br J Surg. 2018;105(12):1650–7. https://doi.org/10.1002/bjs.10914.

    Article  CAS  PubMed  Google Scholar 

  93. •Doumouras AG, Lovrics O, Paterson JM, Sutradhar R, Paszat L, Sivapathasundaram B et al. Residual Risk of Breast Cancer After Bariatric Surgery. JAMA Surg. 2023;12:e230530. https://doi.org/10.1001/jamasurg.2023.0530. Epub ahead of print. In this matched cohort study, bariatric surgery was associated with a reduction in breast cancer risk.

  94. •• Aminian A, Wilson R, Al-Kurd A, Tu C, Milinovich A, Kroh M, et al. Association of bariatric surgery with cancer risk and mortality in adults with obesity. JAMA. 2022;327(24):2423–33. https://doi.org/10.1001/jama.2022.9009The SPLENDID matched cohort study investigated time to incidence of obesity induced cancers in patients treated with and without bariatric surgery. Bariatric surgery was associated with a significantly lower incidence of obesity-associated cancers and cancer-related mortality.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wilson RB, Lathigara D, Kaushal D. Systematic review and meta-analysis of the impact of bariatric surgery on future cancer risk. Int J Mol Sci. 2023;24(7):6192. https://doi.org/10.3390/ijms24076192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang S, Ikramuddin S, Beckwith HC, Sheka AC, Wirth KM, Blaes AH. The impact of bariatric surgery on breast cancer recurrence: case series and review of literature. Obes Surg. 2020;30(2):780–5. https://doi.org/10.1007/s11695-019-04099-6.

    Article  PubMed  PubMed Central  Google Scholar 

  97. BariaTric Surgery After Breast Cancer Treatment (BATS) [cited 2023 Sept 20]. Available from: https://clinicaltrials.gov/ct2/show/NCT03946423

  98. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lond). 2008;32(Suppl 3):S56–9. https://doi.org/10.1038/ijo.2008.87.

    Article  PubMed  Google Scholar 

  99. Deurenberg P, Andreoli A, Borg P, Kukkonen-Harjula K, de Lorenzo A, van Marken Lichtenbelt WD, et al. The validity of predicted body fat percentage from body mass index and from impedance in samples of five European populations. Eur J Clin Nutr. 2001;55(11):973–9. https://doi.org/10.1038/sj.ejcn.1601254.

    Article  CAS  PubMed  Google Scholar 

  100. Ruderman NB, Schneider SH, Berchtold P. The, “metabolically-obese”, normal-weight individual. Am J Clin Nutr. 1981;34(8):1617–21. https://doi.org/10.1093/ajcn/34.8.1617.

    Article  CAS  PubMed  Google Scholar 

  101. Stefan N, Schick F, Häring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metab. 2017;26(2):292–300. https://doi.org/10.1016/j.cmet.2017.07.008.

    Article  CAS  PubMed  Google Scholar 

  102. Franco LP, Morais CC, Cominetti C. Normal-weight obesity syndrome: diagnosis, prevalence, and clinical implications. Nutr Rev. 2016;74(9):558–70. https://doi.org/10.1093/nutrit/nuw019.

    Article  PubMed  Google Scholar 

  103. • Arthur RS, Dannenberg AJ, Kim M, Rohan TE. The association of body fat composition with risk of breast, endometrial, ovarian and colorectal cancers among normal weight participants in the UK Biobank. Br J Cancer. 2021;124(9):1592–605. This study reports an association between body fat levels and risk of several cancers in normal weight individuals; high body fat levels were associated with increased risk of obesity-related cancers in this normal weight population.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim JW, Ahn ST, Oh MM, Moon DG, Han K, Park HS. Incidence of prostate cancer according to metabolic health status: a nationwide cohort study. J Korean Med Sci. 2019;34(6):e49–e49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kabat GC, Kim MY, Stefanick M, Ho GYF, Lane DS, Odegaard AO, et al. Metabolic obesity phenotypes and risk of colorectal cancer in postmenopausal women. Int J Cancer. 2018;143(3):543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu B, Giffney HE, Arthur RS, Rohan TE, Dannenberg AJ. Cancer risk in normal weight individuals with metabolic obesity: a narrative review. Cancer Prev Res (Phila). 2021;14(5):509–20. https://doi.org/10.1158/1940-6207.CAPR-20-0633.

    Article  CAS  PubMed  Google Scholar 

  107. Iyengar NM, Arthur R, Manson JE, Chlebowski RT, Kroenke CH, Peterson L, et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index: a secondary analysis of a randomized clinical trial and observational study. JAMA Oncol. 2019;5(2):155–63. https://doi.org/10.1001/jamaoncol.2018.5327.

    Article  PubMed  Google Scholar 

  108. Park YM, White AJ, Nichols HB, O’Brien KM, Weinberg CR, Sandler DP. The association between metabolic health, obesity phenotype and the risk of breast cancer. Int J Cancer. 2017;140(12):2657–66. https://doi.org/10.1002/ijc.30684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gunter MJ, Xie X, Xue X, Kabat GC, Rohan TE, Wassertheil-Smoller S, Ho GY, Wylie-Rosett J, Greco T, Yu H, Beasley J, Strickler HD. Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res. 2015;75(2):270–4. https://doi.org/10.1158/0008-5472.CAN-14-2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ogundiran TO, Huo D, Adenipekun A, Campbell O, Oyesegun R, Akang E, Adebamowo C, Olopade OI. Body fat distribution and breast cancer risk: findings from the Nigerian breast cancer study. Cancer Causes Control. 2012;23(4):565–74. https://doi.org/10.1007/s10552-012-9916-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part through the National Institutes of Health/National Cancer Institute (NIH/NCI) Cancer Center Support Grant P30 CA008748. SS is supported by a Young Investigator Award from the Conquer Cancer Foundation of the American Society of Clinical Oncology and by the Clinical and Translational Science Center at Weill Cornell Medical Center and Memorial Sloan Kettering Cancer Center CTSA UL1TR00457 grant. NMI is supported through NIH 1R01CA235711, the Breast Cancer Research Foundation, American Cancer Society Research Scholar Grant, and the Kat’s Ribbon of Hope Foundation. NMI discloses research grants (to institution) from Novartis and SynDevRx and consulting fees from Pfizer, Novartis, Seattle Genetics, Gilead, Astra Zeneca, and BD Life Sciences outside the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

S.M.C., B.L., S.S., and N.M.I. wrote the main manuscript text, and S.M.C. prepared Tables 12. All authors reviewed the manuscript.

Corresponding author

Correspondence to Neil M. Iyengar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, S.M., Liu, B., Shen, S. et al. The Role of Obesity and Inflammation in Breast Cancer Recurrence. Curr Breast Cancer Rep 16, 237–250 (2024). https://doi.org/10.1007/s12609-024-00550-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-024-00550-5

Keywords

Navigation