Skip to main content

Advertisement

Log in

Biology and Novel Targets in Metaplastic Breast Cancer

  • Systemic Therapy (J O’Shaughnessy, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Metaplastic breast cancer represents a spectrum of histologic subtypes with the common feature of divergent morphologic differentiation. Most of these subtypes are associated with chemotherapy resistance and an increased likelihood of developing distant metastatic disease, which has been associated with a poor prognosis. However, recent molecular characterization has indicated that some metaplastic cancers may respond to targeted therapy regimens currently undergoing evaluation in early phase clinical trials. In this review, the pathologic characteristics and epidemiology of metaplastic breast cancer are discussed along with novel therapeutic agents that may augment standard chemotherapy for this intriguing type of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wargotz ES, Deos PH, Norris HJ. Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol. 1989;20:732–40.

    Article  PubMed  CAS  Google Scholar 

  2. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. I. Matrix-producing carcinoma. Hum Pathol. 1989;20:628–35.

    Article  PubMed  CAS  Google Scholar 

  3. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. III. Carcinosarcoma. Cancer. 1989;64:1490–9.

    Article  PubMed  CAS  Google Scholar 

  4. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. IV. Squamous cell carcinoma of ductal origin. Cancer. 1990;65:272–6.

    Article  PubMed  CAS  Google Scholar 

  5. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast: V. Metaplastic carcinoma with osteoclastic giant cells. Hum Pathol. 1990;21:1142–50.

    Article  PubMed  CAS  Google Scholar 

  6. Gobbi H, Simpson JF, Borowsky A, et al. Metaplastic breast tumors with a dominant fibromatosis-like phenotype have a high risk of local recurrence. Cancer. 1999;85:2170–82.

    Article  PubMed  CAS  Google Scholar 

  7. Sneige N, Yaziji H, Mandavilli SR, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001;25:1009–16.

    Article  PubMed  CAS  Google Scholar 

  8. Van Hoeven KH, Drudis T, Cranor ML, et al. Low-grade adenosquamous carcinoma of the breast. A clinocopathologic study of 32 cases with ultrastructural analysis. Am J Surg Pathol. 1993;17:248–58.

    Article  PubMed  Google Scholar 

  9. Rosen PP, Ernsberger D. Low-grade adenosquamous carcinoma. A variant of metaplastic mammary carcinoma. Am J Surg Pathol. 1987;11:351–8.

    Article  PubMed  CAS  Google Scholar 

  10. Fisher ER, Palekar AS, Gregorio RM, Paulson JD. Mucoepidermoid and squamous cell carcinomas of breast with reference to squamous metaplasia and giant cell tumors. Am J Surg Pathol. 1983;7:15–27.

    Article  PubMed  CAS  Google Scholar 

  11. Cardoso F, Leal C, Meira A, et al. Squamous cell carcinoma of the breast. Breast. 2000;9:315–9.

    Article  PubMed  CAS  Google Scholar 

  12. Toikkanen S. Primary squamous cell carcinoma of the breast. Cancer. 1981;48:1629–32.

    Article  PubMed  CAS  Google Scholar 

  13. Eggers JW, Chesney TM. Squamous cell carcinoma of the breast: a clinicopathologic analysis of eight cases and review of the literature. Hum Pathol. 1984;15:526–31.

    Article  PubMed  CAS  Google Scholar 

  14. Hennessy BT, Krishnamurthy S, Giordano S, et al. Squamous cell carcinoma of the breast. J Clin Oncol. 2005;23:7827–35.

    Article  PubMed  Google Scholar 

  15. Downs-Kelly E, Nayeemuddin KM, Albarracin C, et al. Matrix-producing carcinoma of the breast: an aggressive subtype of metaplastic carcinoma. Am J Surg Pathol. 2009;33:534–41.

    Article  PubMed  Google Scholar 

  16. Davis WG, Hennessy B, Babiera G, et al. Metaplastic sarcomatoid carcinoma of the breast with absent or minimal overt invasive carcinomatous component: a misnomer. Am J Surg Pathol. 2005;29:1456–63.

    Article  PubMed  Google Scholar 

  17. Kaufman MW, Marti JR, Gallager HS, Hoehn JL. Carcinoma of the breast with pseudosarcomatous metaplasia. Cancer. 1984;53:1908–17.

    Article  PubMed  CAS  Google Scholar 

  18. Carter MR, Hornick JL, Lester S, Fletcher CD. Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 2006;30:300–9.

    PubMed  Google Scholar 

  19. Nguyen CV, Falcon-Escobedo R, Hunt KK, et al. Pleomorphic ductal carcinoma of the breast: predictors of decreased overall survival. Am J Surg Pathol. 2010;34;486–493.

    Google Scholar 

  20. • Pezzi CM, Patel-Parekh L, Cole K, et al. Characteristics and treatment of metaplastic breast cancer: analysis of 892 cases from the National Cancer Data Base. Ann Surg Oncol. 2007;14:166–73. This is the largest study of the characteristics of metaplastic breast cancer.

    Article  PubMed  Google Scholar 

  21. Rayson D, Adjei AA, Suman VJ, et al. Metaplastic breast cancer: prognosis and response to systemic therapy. Ann Oncol. 1999;10:413–9.

    Article  PubMed  CAS  Google Scholar 

  22. Beatty JD, Atwood M, Tickman R, Reiner M. Metaplastic breast cancer: clinical significance. Am J Surg. 2006;191:657–64.

    Article  PubMed  Google Scholar 

  23. Hennessy BT, Giordano S, Broglio K, et al. Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol. 2006;17:605–13.

    Article  PubMed  CAS  Google Scholar 

  24. Lester TR, Hunt KK, Nayeemuddin KM, et al. Metaplastic sarcomatoid carcinoma of the breast appears more aggressive than other triple receptor-negative breast cancers. Breast Cancer Res Treat.

  25. Luini A, Aguilar M, Gatti G, et al. Metaplastic carcinoma of the breast, an unusual disease with worse prognosis: the experience of the European Institute of Oncology and review of the literature. Breast Cancer Res Treat. 2007;101:349–53.

    Article  PubMed  Google Scholar 

  26. Okada N, Hasebe T, Iwasaki M, et al. Metaplastic carcinoma of the breast. Hum Pathol.

  27. Yamaguchi R, Horii R, Maeda I, et al. Clinicopathologic study of 53 metaplastic breast carcinomas: their elements and prognostic implications. Hum Pathol. 2010;41:679–685.

    Google Scholar 

  28. Jung SY, Kim HY, Nam BH, et al. Worse prognosis of metaplastic breast cancer patients than other patients with triple-negative breast cancer. Breast Cancer Res Treat. 120;627–637.

  29. Reis-Filho JS, Milanezi F, Carvalho S, et al. Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res. 2005;7:R1028–1035.

    Article  PubMed  CAS  Google Scholar 

  30. Reis-Filho JS, Milanezi F, Steele D, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49:10–21.

    Article  PubMed  CAS  Google Scholar 

  31. Reis-Filho JS, Pinheiro C, Lambros MB, et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol. 2006;209:445–53.

    Article  PubMed  CAS  Google Scholar 

  32. Leibl S, Moinfar F. Metaplastic breast carcinomas are negative for Her-2 but frequently express EGFR (Her-1): potential relevance to adjuvant treatment with EGFR tyrosine kinase inhibitors? J Clin Pathol. 2005;58:700–4.

    Article  PubMed  CAS  Google Scholar 

  33. Bossuyt V, Fadare O, Martel M, et al. Remarkably high frequency of EGFR expression in breast carcinomas with squamous differentiation. Int J Surg Pathol. 2005;13:319–27.

    Article  PubMed  CAS  Google Scholar 

  34. Gilbert JA, Goetz MP, Reynolds CA, et al. Molecular analysis of metaplastic breast carcinoma: high EGFR copy number via aneusomy. Mol Cancer Ther. 2008;7:944–51.

    Article  PubMed  CAS  Google Scholar 

  35. Savage K, Lambros MB, Robertson D, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res. 2007;13:90–101.

    Article  PubMed  CAS  Google Scholar 

  36. Sitterding SM, Wiseman WR, Schiller CL, et al. AlphaB-crystallin: a novel marker of invasive basal-like and metaplastic breast carcinomas. Ann Diagn Pathol. 2008;12:33–40.

    Article  PubMed  Google Scholar 

  37. Leibl S, Gogg-Kammerer M, Sommersacher A, et al. Metaplastic breast carcinomas: are they of myoepithelial differentiation?: immunohistochemical profile of the sarcomatoid subtype using novel myoepithelial markers. Am J Surg Pathol. 2005;29:347–53.

    Article  PubMed  Google Scholar 

  38. Reis-Filho JS, Milanezi F, Paredes J, et al. Novel and classic myoepithelial/stem cell markers in metaplastic carcinomas of the breast. Appl Immunohistochem Mol Morphol. 2003;11:1–8.

    Article  PubMed  CAS  Google Scholar 

  39. Weigelt B, Kreike B, Reis-Filho JS. Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. 2009;117:273–80.

    Article  PubMed  CAS  Google Scholar 

  40. Herschkowitz JI, Simin K, Weigman VJ, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007;8:R76.

    Article  PubMed  Google Scholar 

  41. • Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69:4116–24. This article describes the high rate of PIK3CA mutations and molecular characteristics of subtypes of metaplastic breast cancer, including the high correlation with a cancer stem cell-derived molecular signature.

    Article  PubMed  CAS  Google Scholar 

  42. Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.

    Google Scholar 

  43. Wada H, Enomoto T, Tsujimoto M, et al. Carcinosarcoma of the breast: molecular-biological study for analysis of histogenesis. Hum Pathol. 1998;29:1324–8.

    Article  PubMed  CAS  Google Scholar 

  44. Zhuang Z, Lininger RA, Man YG, et al. Identical clonality of both components of mammary carcinosarcoma with differential loss of heterozygosity. Mod Pathol. 1997;10:354–62.

    PubMed  CAS  Google Scholar 

  45. Geyer FC, Weigelt B, Natrajan R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 2010;220:562–73.

    Article  PubMed  CAS  Google Scholar 

  46. Reis-Filho JS, Schmitt FC. p63 expression in sarcomatoid/metaplastic carcinomas of the breast. Histopathology. 2003;42:94–5.

    Article  PubMed  CAS  Google Scholar 

  47. Sproul D, Nestor C, Culley J, et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A. 2011;108:4364–9.

    Article  PubMed  CAS  Google Scholar 

  48. Lien HC, Hsiao YH, Lin YS, et al. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene. 2007;26:7859–71.

    Article  PubMed  CAS  Google Scholar 

  49. Karreth F, Tuveson DA. Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther. 2004;3:1058–9.

    Article  PubMed  CAS  Google Scholar 

  50. Valsesia-Wittmann S, Magdeleine M, Dupasquier S, et al. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell. 2004;6:625–30.

    Article  PubMed  CAS  Google Scholar 

  51. • Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci U S A. 2010;107:15449–54. This article details the features of metaplastic breast cancer that relate to epithelial-to-mesenchymal transition.

    Article  PubMed  CAS  Google Scholar 

  52. Hayes MJ, Thomas D, Emmons A, et al. Genetic changes of Wnt pathway genes are common events in metaplastic carcinomas of the breast. Clin Cancer Res. 2008;14:4038–44.

    Article  PubMed  CAS  Google Scholar 

  53. Lacroix-Triki M, Geyer FC, Lambros MB, et al. beta-catenin/Wnt signalling pathway in fibromatosis, metaplastic carcinomas and phyllodes tumours of the breast. Mod Pathol. 2010;23:1438–48.

    Article  PubMed  CAS  Google Scholar 

  54. Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14:29–43.

    Article  PubMed  Google Scholar 

  55. Mimeault M, Hauke R, Mehta PP, Batra SK. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med. 2007;11:981–1011.

    Article  PubMed  CAS  Google Scholar 

  56. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  57. Bedard PL, Cardoso F, Piccart-Gebhart MJ. Stemming resistance to HER-2 targeted therapy. J Mammary Gland Biol Neoplasia. 2009;14:55–66.

    Article  PubMed  Google Scholar 

  58. Debeb BG, Xu W, Woodward WA. Radiation resistance of breast cancer stem cells: understanding the clinical framework. J Mammary Gland Biol Neoplasia. 2009;14:11–7.

    Article  PubMed  Google Scholar 

  59. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O. Breast cancer chemoresistance: Emerging importance of cancer stem cells. Surg Oncol. 2009.

  60. O’Brien CS, Howell SJ, Farnie G, Clarke RB. Resistance to endocrine therapy: are breast cancer stem cells the culprits? J Mammary Gland Biol Neoplasia. 2009;14:45–54.

    Article  PubMed  Google Scholar 

  61. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    Article  PubMed  CAS  Google Scholar 

  62. Liu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356:217–26.

    Article  PubMed  CAS  Google Scholar 

  63. Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  PubMed  CAS  Google Scholar 

  64. Creighton CJ, Li X, Landis M, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106:13820–5.

    Article  PubMed  CAS  Google Scholar 

  65. Zhou J, Wulfkuhle J, Zhang H, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104:16158–63.

    Article  PubMed  CAS  Google Scholar 

  66. Mungamuri SK, Yang X, Thor AD, Somasundaram K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res. 2006;66:4715–24.

    Article  PubMed  CAS  Google Scholar 

  67. Moulder S, Moroney J, Helgason T, et al. Responses to liposomal Doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: biologic rationale and implications for stem-cell research in breast cancer. J Clin Oncol. 2011;29:e572–575.

    Google Scholar 

  68. Moeller BJ, Dreher MR, Rabbani ZN, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8:99–110.

    Article  PubMed  CAS  Google Scholar 

  69. Jain RK, Finn AV, Kolodgie FD, et al. Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat Clin Pract Cardiovasc Med. 2007;4:491–502.

    Article  PubMed  CAS  Google Scholar 

  70. Bellino R, Arisio R, D’Addato F, et al. Metaplastic breast carcinoma: pathology and clinical outcome. Anticancer Res. 2003;23:669–73.

    PubMed  Google Scholar 

  71. Kochhar R, Howard EM, Umbreit JN, Lau SK. Metaplastic breast carcinoma with squamous differentiation: molecular and clinical analysis of six cases. Breast J. 2005;11:367–9.

    Article  PubMed  Google Scholar 

  72. Nusse R. Wnt signaling in disease and in development. Cell Res. 2005;15:28–32.

    Article  PubMed  CAS  Google Scholar 

  73. Cheung YC, Lee KF, Ng SH, et al. Sonographic features with histologic correlation in two cases of palpable breast cancer after breast augmentation by liquid silicone injection. J Clin Ultrasound. 2002;30:548–51.

    Article  PubMed  Google Scholar 

  74. Kloos I, Delaloge S, Pautier P, et al. Tamoxifen-related uterine carcinosarcomas occur under/after prolonged treatment: report of five cases and review of the literature. Int J Gynecol Cancer. 2002;12:496–500.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Moulder-Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulder-Thompson, S.L. Biology and Novel Targets in Metaplastic Breast Cancer. Curr Breast Cancer Rep 4, 48–55 (2012). https://doi.org/10.1007/s12609-011-0064-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-011-0064-2

Keywords

Navigation