Skip to main content
Log in

The Effect of Surgical Weight Loss on Cognition in Individuals with Class II/III Obesity

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

To Background

Obesity is a global epidemic and is associated with cognitive impairment and dementia. It remains unknown whether weight loss interventions, such as bariatric surgery, can mitigate cognitive impairment.

Objectives

We aimed to determine the effect of surgical weight loss on cognition in individuals with class II/III obesity.

Design

We performed a prospective cohort study of participants who underwent bariatric surgery. At baseline and two years following surgery, participants completed metabolic risk factor and neuropsychological assessments.

Setting

Participants were enrolled from an academic suburban bariatric surgery clinic.

Participants

There were 113 participants who completed baseline assessments and 87 completed two-year follow-up assessments (66 in-person and 21 virtual) after bariatric surgery. The mean (SD) age was 46.8 (12.5) years and 64 (73.6%) were female.

Intervention

Bariatric surgery. There were 77 (88.5%) participants that underwent sleeve gastrectomy and 10 (11.5%) that underwent gastric bypass surgery.

Measurements

Cognition was assessed using the NIH toolbox cognitive battery (NIHTB-CB) and the Rey Auditory Verbal Learning Test (AVLT). The primary outcome was the change in NIHTB-CB fluid composite score before and after surgery.

Results

The primary outcome, NIHTB-CB composite score, was stable following bariatric surgery (−0.4 (13.9), p=0.81,n=66). Among secondary outcomes, the NIHTB-CB dimensional card sorting test (executive function assessment), improved (+6.5 (19.9), p=0.01, n=66) while the Rey AVLT delayed recall test (memory assessment) declined (−0.24 (0.83), p=0.01, n=87) following surgery. Improvements to metabolic risk factors and diabetes complications were not associated with improvements to NIHTB-CB composite score. The other 4 NIHTB-CB subtests and Rey AVLT assessments of auditory learning and recognition were stable at follow-up.

Conclusions

Following bariatric surgery, the age-adjusted composite cognitive outcome did not change, but an executive subtest score improved. These results suggest that bariatric surgery may mitigate the natural history of cognitive decline in individuals with obesity, which is expected to be faster than normal aging, but confirmatory randomized controlled trials are needed. The decline in delayed recall also warrants further studies to determine potential differential effects on cognitive subtests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N Engl J Med. 2019;381(25):2440–2450. doi:https://doi.org/10.1056/NEJMsa1909301

    Article  PubMed  Google Scholar 

  2. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–446. doi:https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qu Y, Hu HY, Ou YN, et al. Association of body mass index with risk of cognitive impairment and dementia: A systematic review and meta-analysis of prospective studies. Neuroscience & Biobehavioral Reviews. 2020;115:189–198. doi:https://doi.org/10.1016/j.neubiorev.2020.05.012

    Article  Google Scholar 

  4. Callaghan BC, Reynolds EL, Banerjee M, et al. The Prevalence and Determinants of Cognitive Deficits and Traditional Diabetic Complications in the Severely Obese. Diabetes Care. 2020;43(3):683–690. doi:https://doi.org/10.2337/dc19-1642

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mulhauser K, Reynolds EL, Callaghan BC, Fierro C, Giordani B, Votruba K. Executive Functioning in Extreme Obesity: Contributions from Metabolic Status, Medical Comorbidities, and Psychiatric Factors. Obes Surg. 2021;31(6):2669–2681. doi:https://doi.org/10.1007/s11695-021-05319-8

    Article  PubMed  Google Scholar 

  6. Xue M, Xu W, Ou YN, et al. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Research Reviews. 2019;55:100944. doi:https://doi.org/10.1016/j.arr.2019.100944

    Article  CAS  PubMed  Google Scholar 

  7. Atti AR, Valente S, Iodice A, et al. Metabolic Syndrome, Mild Cognitive Impairment, and Dementia: A Meta-Analysis of Longitudinal Studies. The American Journal of Geriatric Psychiatry. 2019;27(6):625–637. doi:https://doi.org/10.1016/j.jagp.2019.01.214

    Article  PubMed  Google Scholar 

  8. Debette S, Seshadri S, Beiser A, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77(5):461–468. doi:https://doi.org/10.1212/WNL.0b013e318227b227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Putnam NM, Reynolds EL, Banerjee M, et al. Neuropsychological Outcomes in Individuals With Type 1 and Type 2 Diabetes. Front Endocrinol (Lausanne). 2022;13:834978. doi:https://doi.org/10.3389/fendo.2022.834978

    Article  PubMed  Google Scholar 

  10. Li C mei, Song J run, Zhao J, et al. The effects of bariatric surgery on cognition in patients with obesity: a systematic review and meta-analysis. Surgery for Obesity and Related Diseases. 2022;18(11):1323–1338. doi:https://doi.org/10.1016/j.soard.2022.07.007

    Article  PubMed  Google Scholar 

  11. Angrisani L, Santonicola A, Iovino P, et al. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. OBES SURG. 2017;27(9):2279–2289. doi:https://doi.org/10.1007/s11695-017-2666-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reames BN, Finks JF, Bacal D, Carlin AM, Dimick JB. Changes in Bariatric Surgery Procedure Use in Michigan, 2006–2013. JAMA. 2014;312(9):959. doi:https://doi.org/10.1001/jama.2014.7651

    Article  PubMed  PubMed Central  Google Scholar 

  13. Callaghan BC, Reynolds E, Banerjee M, Chant E, Villegas-Umana E, Feldman EL. Central Obesity is Associated With Neuropathy in the Severely Obese. Mayo Clin Proc. 2020;95(7):1342–1353. doi:https://doi.org/10.1016/j.mayocp.2020.03.025

    Article  PubMed  Google Scholar 

  14. Lauria G, Hsieh ST, Johansson O, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Fe-deration of Neurological Societies and the Peripheral Ne: EFNS/PNS guideline on skin biopsy. European Journal of Neurology. 2010;17(7):903–e49. doi:https://doi.org/10.1111/j.1468-1331.2010.03023.x

    Article  CAS  PubMed  Google Scholar 

  15. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The Value of Cardiovascular Autonomic Function Tests: 10 Years Experience in Diabetes. Diabetes Care. 1985;8(5):491–498. doi:https://doi.org/10.2337/diacare.8.5.491

    Article  CAS  PubMed  Google Scholar 

  16. Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management: Diabetic Cardiovascular Autonomic Neuropathy in Clinical Practice. Diabetes/Metabolism Research and Reviews. 2011;27(7):639–653. doi:https://doi.org/10.1002/dmrr.1239

    Article  PubMed  Google Scholar 

  17. Joltikov KA, de Castro VM, Davila JR, et al. Multidimensional Functional and Structural Evaluation Reveals Neuroretinal Impairment in Early Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2017;58(6):BIO277–BIO290. doi:https://doi.org/10.1167/iovs.17-21863

    Article  PubMed  PubMed Central  Google Scholar 

  18. Delgado C, Baweja M, Crews DC, et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis. 2022;79(2):268–288.e1. doi:https://doi.org/10.1053/j.ajkd.2021.08.003

    Article  PubMed  Google Scholar 

  19. Tesfaye S, Boulton AJM, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33(10):2285–2293. doi:https://doi.org/10.2337/dc10-1303

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Sousa Magalhães S, Fernandes Malloy-Diniz L, Cavalheiro Hamdan A. Validity convergent and reliability test-retest of the rey auditory verbal learning test. Clinical Neuropsychiatry. 2012;9(3).

  21. Moradi E, Hallikainen I, Hänninen T, Tohka J. Rey’s Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer’s disease. NeuroImage: Clinical. 2017;13:415–427. doi:https://doi.org/10.1016/j.nicl.2016.12.011

    Article  PubMed  Google Scholar 

  22. Reynolds EL, Watanabe M, Banerjee M, et al. The effect of surgical weight loss on diabetes complications in individuals with class II/III obesity. Diabetologia. Published online March 14, 2023:1–16. doi:https://doi.org/10.1007/s00125-023-05899-3

  23. Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14–21. doi:https://doi.org/10.1093/ageing/afv151

    Article  PubMed  Google Scholar 

  24. Gunstad J, Strain G, Devlin MJ, et al. Improved memory function 12 weeks after bariatric surgery. Surgery for obesity and related diseases. 2011;7(4):465–472.

    Article  PubMed  Google Scholar 

  25. Miller LA, Crosby RD, Galioto R, et al. Bariatric Surgery Patients Exhibit Improved Memory Function 12 Months Postoperatively. OBES SURG. 2013;23(10):1527–1535. doi:https://doi.org/10.1007/s11695-013-0970-7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alosco ML, Spitznagel MB, Strain G, et al. Improved memory function two years after bariatric surgery. Obesity. 2014;22(1):32–38. doi:https://doi.org/10.1002/oby.20494

    Article  PubMed  Google Scholar 

  27. Alosco ML, Galioto R, Spitznagel MB, et al. Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. The American Journal of Surgery. 2014;207(6):870–876. doi:https://doi.org/10.1016/j.amjsurg.2013.05.018

    Article  PubMed  Google Scholar 

  28. Pearce AL, Mackey E, Cherry JBC, et al. Effect of Adolescent Bariatric Surgery on the Brain and Cognition: A Pilot Study: Adolescent Bariatric Surgery: Brain and Cognition. Obesity. 2017;25(11):1852–1860. doi:https://doi.org/10.1002/oby.22013

    Article  PubMed  Google Scholar 

  29. Almby KE, Lundqvist MH, Abrahamsson N, et al. Effects of Gastric Bypass Surgery on the Brain: Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia. Diabetes. 2021;70(6):1265–1277. doi:https://doi.org/10.2337/db20-1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saindane AM, Drane DL, Singh A, Wu J, Qiu D. Neuroimaging correlates of cognitive changes after bariatric surgery. Surgery for Obesity and Related Diseases. 2020;16(1):119–127. doi:https://doi.org/10.1016/j.soard.2019.09.076

    Article  PubMed  Google Scholar 

  31. Morton J. O–065 Gastric Bypass Improves Cognition. OBES SURG. 2009;19(8):953–1076. doi:https://doi.org/10.1007/s11695-009-9904-9

    Google Scholar 

  32. Önen S, Budak E, Taymur , Çayci HM, Dilektaşlı E. Changes in Visual Cognitive Skills After Weight Loss Surgery in Women. Bariatric Surgical Practice and Patient Care. 2020;15(3):174–180. doi:https://doi.org/10.1089/bari.2019.0027

    Article  Google Scholar 

  33. Guldstrand M, Ahrén B, Wredling R, Backman L, Lins PE, Adamson U. Alteration of the counterregulatory responses to insulin-induced hypoglycemia and of cognitive function after massive weight reduction in severely obese subjects. Metabolism. 2003;52(7):900–907. doi:https://doi.org/10.1016/s0026-0495(03)00103-3

    Article  CAS  PubMed  Google Scholar 

  34. Sousa S, Ribeiro O, Göis Horácio J, Faísca L. EXECUTIVE FUNCTIONS IN PATIENTS SEEKING AND UNDERGOING BARIATRIC SURGERY. Psic, Saúde & Doenças. 2012;13(2). doi:https://doi.org/10.15309/12psd130216

  35. Georgiadou E, Gruner-Labitzke K, Köhler H, de Zwaan M, MüValler A. Cognitive function and nonfood-related impulsivity in post-bariatric surgery patients. Front Psychol. 2014;5. doi:https://doi.org/10.3389/fpsyg.2014.01502

  36. Mackey ER, Jacobs M, Nadler EP, et al. Cognitive Performance as Predictor and Outcome of Adolescent Bariatric Surgery: A Nonrandomized Pilot Study. Journal of Pediatric Psychology. 2018;43(8):916–927. doi:https://doi.org/10.1093/jpepsy/jsy028

    Article  PubMed  PubMed Central  Google Scholar 

  37. Prehn K, Profitlich T, Rangus I, et al. Bariatric Surgery and Brain Health-A Longitudinal Observational Study Investigating the Effect of Surgery on Cognitive Function and Gray Matter Volume. Nutrients. 2020;12(1):127. doi:https://doi.org/10.3390/nu12010127

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marques EL, Halpern A, Corrêa Mancini M, et al. Changes in Neuropsychological Tests and Brain Metabolism After Bariatric Surgery. The Journal of Clinical Endocrinology & Metabolism. 2014;99(11):E2347–E2352. doi:https://doi.org/10.1210/jc.2014-2068

    Article  CAS  Google Scholar 

  39. Li J, Lai D, Wu D. Laparoscopic Roux-en-Y Gastric Bypass Versus Laparoscopic Sleeve Gastrectomy to Treat Morbid Obesity-Related Comorbidities: a Systematic Review and Meta-analysis. OBES SURG. 2016;26(2):429–442. doi:https://doi.org/10.1007/s11695-015-1996-9

    Article  PubMed  Google Scholar 

  40. Ziegler O, Sirveaux MA, Brunaud L, Reibel N, Quilliot D. Medical follow up after bariatric surgery: nutritional and drug issues. General recommendations for the prevention and treatment of nutritional deficiencies. Diabetes Metab. 2009;35(6 Pt 2):544–557. doi:https://doi.org/10.1016/S1262-3636(09)73464-0

    Article  CAS  PubMed  Google Scholar 

  41. Ahmad A, Kornrich DB, Krasner H, et al. Prevalence of Dumping Syndrome After Laparoscopic Sleeve Gastrectomy and Comparison with Laparoscopic Roux-en-Y Gastric Bypass. Obes Surg. 2019;29(5):1506–1513. doi:https://doi.org/10.1007/s11695-018-03699-y

    Article  PubMed  Google Scholar 

  42. Ginsberg TB, Powell L, Emrani S, et al. Instrumental Activities of Daily Living, Neuropsychiatric Symptoms, and Neuropsychological Impairment in Mild Cognitive Impairment. Journal of Osteopathic Medicine. 2019;119(2):96–101. doi:https://doi.org/10.7556/jaoa.2019.015

    Article  Google Scholar 

  43. Galioto R, Alosco ML, Spitznagel MB, et al. Glucose regulation and cognitive function after bariatric surgery. Journal of Clinical and Experimental Neuropsychology. 2015;37(4):402–413. doi:https://doi.org/10.1080/13803395.2015.1023264

    Article  PubMed  PubMed Central  Google Scholar 

  44. van Hout G, Boekestein P, Fortuin F, Pelle A, van Heck G. Psychosocial Functioning following Bariatric Surgery. obes surg. 2006;16(6):787–794. doi:https://doi.org/10.1381/096089206777346808

    Article  PubMed  Google Scholar 

  45. Hong YR, Yadav S, Suk R, et al. Assessment of Physical Activity and Healthy Eating Behaviors Among US Adults Receiving Bariatric Surgery. JAMA Netw Open. 2022;5(6):e2217380. doi:https://doi.org/10.1001/jamanetworkopen.2022.17380

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chua S, Arthur L, de Beaux A, Tulloh B, Lamb P. Bariatric surgery produces significant and sustained reduction in polypharmacy dependency in obese patients–A retrospective review of post-operative outcomes in NHS Lothian. International Journal of Surgery. 2014;12:S98. doi:https://doi.org/10.1016/j.ijsu.2014.08.243

    Article  Google Scholar 

  47. Sarkhosh K, Switzer NJ, El-Hadi M, Birch DW, Shi X, Karmali S. The Impact of Bariatric Surgery on Obstructive Sleep Apnea: A Systematic Review. OBES SURG. 2013;23(3):414–423. doi:https://doi.org/10.1007/s11695-012-0862-2

    Article  PubMed  Google Scholar 

  48. Rock PL, Roiser JP, Riedel WJ, Blackwell AD. Cognitive impairment in depression: a systematic review and meta-analysis. Psychol Med. 2014;44(10):2029–2040. doi:https://doi.org/10.1017/S0033291713002535

    Article  CAS  PubMed  Google Scholar 

  49. Pitrou I, Vasiliadis HM, Hudon C. Body mass index and cognitive decline among community-living older adults: the modifying effect of physical activity. Eur Rev Aging Phys Act. 2022;19(1):3. doi:https://doi.org/10.1186/s11556-022-00284-2

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cheng CM, Chang WH, Chiu YC, et al. Association of Polypharmacy With Mild Cognitive Impairment and Cognitive Ability: A Nationwide Survey in Taiwan. J Clin Psychiatry. 2018;79(6):17m12043. doi:https://doi.org/10.4088/JCP.17m12043

    Article  Google Scholar 

  51. Klimova B, Dziuba S, Cierniak-Emerych A. The Effect of Healthy Diet on Cognitive Performance Among Healthy Seniors - A Mini Review. Front Hum Neurosci. 2020;14:325. doi:https://doi.org/10.3389/fnhum.2020.00325

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bubu OM, Andrade AG, Umasabor-Bubu OQ, et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: A systematic review integrating three decades of multidisciplinary research. Sleep Med Rev. 2020;50:101250. doi:https://doi.org/10.1016/j.smrv.2019.101250

    Article  PubMed  Google Scholar 

  53. Alosco ML, Spitznagel MB, Strain G, et al. The effects of cystatin C and alkaline phosphatase changes on cognitive function 12-months after bariatric surgery. Journal of the Neurological Sciences. 2014;345(1–2):176–180. doi:https://doi.org/10.1016/j.jns.2014.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alosco ML, Spitznagel MB, Strain G, et al. Family history of Alzheimer’s disease limits improvement in cognitive function after bariatric surgery. SAGE Open Medicine. 2014;2:205031211453947. doi:https://doi.org/10.1177/2050312114539477

    Article  Google Scholar 

  55. Alosco ML, Spitznagel MB, Strain G, et al. Improved Serum Leptin and Ghrelin Following Bariatric Surgery Predict Better Postoperative Cognitive Function. J Clin Neurol. 2015;11(1):48. doi:https://doi.org/10.3988/jcn.2015.11.1.48

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alosco ML, Cohen R, Spitznagel MB, et al. Older age does not limit postbariatric surgery cognitive benefits: a preliminary investigation. Surgery for Obesity and Related Diseases. 2014;10(6):1196–1201. doi:https://doi.org/10.1016/j.soard.2014.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lavender JM, Alosco ML, Spitznagel MB, et al. Association between binge eating disorder and changes in cognitive functioning following bariatric surgery. Journal of Psychiatric Research. 2014;59:148–154. doi:https://doi.org/10.1016/j.jpsychires.2014.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alosco ML, Spitznagel MB, Strain G, et al. Pre-operative history of depression and cognitive changes in bariatric surgery patients. Psychol Health Med. 2015;20(7):802–813. doi:https://doi.org/10.1080/13548506.2014.959531

    Article  PubMed  Google Scholar 

  59. Hawkins MAW, Alosco ML, Spitznagel MB, et al. The Association Between Reduced Inflammation and Cognitive Gains After Bariatric Surgery. Psychosomatic Medicine. 2015;77(6):688–696. doi:https://doi.org/10.1097/PSY.0000000000000125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berger I, Wu S, Masson P, et al. Cognition in chronic kidney disease: a systematic review and meta-analysis. BMC Med. 2016;14(1):206. doi:https://doi.org/10.1186/s12916-016-0745-9

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lin YJ, Kao TW, Chen WL. Relationship between peripheral neuropathy and cognitive performance in the elderly population. Medicine. 2021;100(20):e26071. doi:https://doi.org/10.1097/MD.0000000000026071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

Funding: The project described was supported by Grant Number P30DK020572 (MDRC) from the National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Dr. Reynolds is supported by the NIH NIDDK (K99DK129785). Dr. Elafros is supported by NIH NINDS (5R25NS089450). Dr. Feldman is supported by the NIH (U01AG057562, U24DK115255, R01DK130913), the Robert E. Nederlander Sr. Program for Alzheimer’s Research, the Andrea and Lawrence A. Wolfe Brain Health Initiative Fund, the A. Alfred Taubman Medical Research Institute, and the NeuroNetwork for Emerging Therapies. Dr. Callaghan is supported by the NIH NIDDK (R01DK115687).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: Dr. Reynolds was involved in the study design, interpretation of the statistical analysis, and critical revisions of the manuscript. Dr. Votruba was integrally involved in the study design, interpretation of the data, and critical revisions of the manuscript. Ms. Watanabe performed and interpreted the statistical analysis and provided critical revisions of the manuscript. Dr. Banerjee was involved in the study design, interpretation of the data, and critical revisions of the manuscript. Dr Elafros was involved in the interpretation of the statistical analysis and critical revisions of the manuscript. Ms. Chant was involved in the study design and critical revisions of the manuscript. Ms. Villegas-Umana was involved in the study design and critical revisions of the manuscript. Dr. Giordani was involved in the interpretation of the statistical analysis and critical revisions of the manuscript. Dr. Feldman was involved in the interpretation of the statistical analysis and critical revisions of the manuscript. Dr. Callaghan was involved in the study design, interpretation of the statistical analysis and critical revisions of the manuscript.

Corresponding author

Correspondence to Brian C. Callaghan.

Ethics declarations

Conflict of Interests: Dr. Reynolds reports no disclosures. Dr. Votruba reports no disclosures. Ms. Watanabe reports no disclosures. Dr. Banerjee reports no disclosures. Dr. Elafros reports no disclosures. Ms. Chant reports no disclosures. Ms. Villegas-Umana reports no disclosures. Dr. Giordani reports no disclosures. Dr. Feldman reports no disclosures. Dr. Callaghan consults for DynaMed, receives research support from the American Academy of Neurology and performs medical legal consultations including consultations for the Vaccine Injury Compensation Program.

Ethics approval and participant consent: This study was approved by the University of Michigan Medical School Institutional Review Board. All study participants provided written informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, E.L., Votruba, K.L., Watanabe, M. et al. The Effect of Surgical Weight Loss on Cognition in Individuals with Class II/III Obesity. J Nutr Health Aging 27, 1153–1161 (2023). https://doi.org/10.1007/s12603-023-2047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-2047-1

Key words

Navigation