Skip to main content
Log in

Association between Reduction of Muscle Mass and Faster Declines in Global Cognition among Older People: A 4-Year Prospective Cohort Study

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

A few studies reported that both decrease and increase in body mass index (BMI) were associated with the development of dementia in later life. However, it is unclear what changes in body composition are associated with cognitive decline. This study investigated the longitudinal influences of changes in body composition on cognitive function among community-dwelling adults.

Design, Setting and Participants

This longitudinal study included older adults aged ≥60 years without cognitive impairment who participated in National Institute for Longevity Sciences -Longitudinal Study of Aging.

Measurements

Cognitive function was assessed using the MMSE. Body composition was measured by a dual-energy X-ray absorptiometry system. Then, BMI, fat mass index (FMI), fat-free mass index (FFMI), and muscle mass index (MMI) were calculated. The changes in body composition over 6 years (second wave to fifth wave) were calculated, and three groups were created: decreased group, decrease of >5%; stable group, change within 5%, and increased group, increase of >5%. In statistical analysis, a linear mixed model was applied by sex to investigate the influences of body composition changes on cognitive function over 4 years (fifth wave to seventh wave).

Results

This study analyzed 515 participants (mean age, 67.05 years; 53.4% men). Men with decreased group in FFMI and MMI exhibited faster declines in MMSE scores than those with stable group (β [95% CI]: FFMI, −0.293 [−0.719 to −0.020]; MMI, −0.472 [−0.884 to −0.059]). In women, there was no significant association between body composition changes and cognitive functions.

Conclusions

Decrease in fat-free mass and muscle mass is associated with faster cognitive declines in men. These results suggest the importance of continuous monitoring of muscle mass to prevent cognitive decline in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Switzerland: World Health Organization; 2019. https://www.who.int/publications/i/item/9789241550543.

  2. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022;7:e105–125. https://doi.org/10.1016/S2468-2667(21)00249-8.

    Article  Google Scholar 

  3. Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020;396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing 2016;45:14–21. https://doi.org/10.1093/ageing/afv151.

    Article  PubMed  Google Scholar 

  5. Power BD, Alfonso H, Flicker L, Hankey GJ, Yeap BB, Almeida OP. Changes in body mass in later life and incident dementia. Int Psychogeriatr 2013;25:467–478. https://doi.org/10.1017/S1041610212001834.

    Article  PubMed  Google Scholar 

  6. Atti AR, Palmer K, Volpato S, Winblad B, De Ronchi D, Fratiglioni L. Late-life body mass index and dementia incidence: nine-year follow-up data from the Kungsholmen Project. J Am Geriatr Soc 2008;56:111–116. https://doi.org/10.1111/j.1532-5415.2007.01458.x.

    Article  PubMed  Google Scholar 

  7. Kivimäki M, Luukkonen R, Batty GD, et al. Body mass index and risk of dementia: analysis of individual-level data from 1.3 million individuals. Alzheimers Dement 2018;14:601–609. https://doi.org/10.1016/j.jalz.2017.09.016.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh-Manoux A, Dugravot A, Shipley M, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II study. Alzheimers Dement 2018;14:178–186. https://doi.org/10.1016/jjalz.2017.06.2637.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Johnson DK, Wilkins CH, Morris JC. Accelerated weight loss may precede diagnosis in Alzheimer disease. Arch Neurol 2006;63:1312–1317. https://doi.org/10.1001/archneur.63.9.1312.

    Article  PubMed  Google Scholar 

  10. Park S, Jeon SM, Jung SY, Hwang J, Kwon JW. Effect of late-life weight change on dementia incidence: a 10-year cohort study using claim data in Korea. BMJ Open 2019;9:e021739. https://doi.org/10.1136/bmjopen-2018-021739.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jackson AS, Janssen I, Sui X, Church TS, Blair SN. Longitudinal changes in body composition associated with healthy ageing: men, aged 20–96 years. Br J Nutr 2012;107:1085–1091. https://doi.org/10.1017/S0007114511003886.

    Article  CAS  PubMed  Google Scholar 

  12. Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 2010;67:428–433. https://doi.org/10.1001/archneurol.2010.38.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moon JH, Moon JH, Kim KM, et al. Sarcopenia as a predictor of future cognitive impairment in older adults. J Nutr Health Aging 2016;20:496–502. https://doi.org/10.1007/s12603-015-0613-x.

    Article  CAS  PubMed  Google Scholar 

  14. Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Leach S, Pasco JA. Muscle strength and gait speed rather than lean mass are better indicators for poor cognitive function in older men. Sci Rep 2020;10:10367. https://doi.org/10.1038/s41598-020-67251-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bredella MA. Sex Differences in Body Composition. Adv Exp Med Biol 2017;1043:9–27. https://doi.org/10.1007/978-3-319-70178-3_2.

    Article  CAS  PubMed  Google Scholar 

  16. Kim S, Won CW. Sex-different changes of body composition in aging: a systemic review. Arch Gerontol Geriatr 2022;102:104711. https://doi.org/10.1016/j.archger.2022.104711.

    Article  PubMed  Google Scholar 

  17. Shimokata H, Ando F, Niino N. A new comprehensive study on aging—the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA). J Epidemiol 2000;10:S1–S9. https://doi.org/10.2188/jea.10.1sup_1.

    Article  CAS  PubMed  Google Scholar 

  18. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6.

    Article  CAS  PubMed  Google Scholar 

  19. Hanyu H, Maezono M, Sakurai H, Kume K, Kanetaka H, Iwamoto T. Japanese version of the Test Your Memory as a screening test in a Japanese memory clinic. Psychiatry Res 2011;190:145–148. https://doi.org/10.1016/j.psychres.2011.04.025.

    Article  PubMed  Google Scholar 

  20. Lee CG, Boyko EJ, Nielson CM, et al. Osteoporotic Fractures in Men Study Group. Mortality risk in older men associated with changes in weight, lean mass, and fat mass. J Am Geriatr Soc 2011;59(2):233–40. https://doi.org/10.1111/j.1532-5415.2010.03245.x.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanaya AM, Lindquist K, Harris TB, et al. Total and regional adiposity and cognitive change in older adults: the Health, Aging and Body Composition (ABC) study. Arch Neurol 2009;66:329–335. https://doi.org/10.1001/archneurol.2008.570.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Noh HM, Oh S, Song HJ, et al. Relationships between cognitive function and body composition among community-dwelling older adults: a cross-sectional study. BMC Geriatr 2017;17:259. https://doi.org/10.1186/s12877-017-0651-9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Papachristou E, Ramsay SE, Lennon LT, et al. The relationships between body composition characteristics and cognitive functioning in a population-based sample of older British men. BMC Geriatr 2015;15:172. https://doi.org/10.1186/s12877-015-0169-y.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Whitehair DC, Sherzai A, Emond J, et al. Influence of apolipoprotein E varepsilon4 on rates of cognitive and functional decline in mild cognitive impairment. Alzheimers Dement 2010;6:412–419. https://doi.org/10.1016/j.jalz.2009.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shimokata H, Ando F, Yuki A, Otsuka R. Age-related changes in skeletal muscle mass among community-dwelling Japanese: a 12-year longitudinal study. Geriatr Gerontol Int 2014;14:85–92. https://doi.org/10.1111/ggi.12219.

    Article  PubMed  Google Scholar 

  26. Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA. Skeletal muscle health and cognitive function: A narrative review. Int J Mol Sci 2020;22:255. https://doi.org/10.3390/ijms22010255.

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Kan GA, Cesari M, Gillette-Guyonnet S, Dupuy C, Vellas B, Rolland Y. Association of a 7-year percent change in fat mass and muscle mass with subsequent cognitive dysfunction: the EPIDOS-Toulouse cohort. J Cachexia Sarcopenia Muscle 2013;4:225–229. https://doi.org/10.1007/s13539-013-0112-z.

    Article  PubMed  Google Scholar 

  28. Taniguchi Y, Kitamura A, Murayama H, et al. Mini-Mental State Examination score trajectories and incident disabling dementia among community-dwelling older Japanese adults. Geriatr Gerontol Int 2017;17:1928–1935. https://doi.org/10.1111/ggi.12996.

    Article  PubMed  Google Scholar 

  29. Nishiguchi S, Yamada M, Shirooka H, et al. Sarcopenia as a Risk Factor for Cognitive Deterioration in Community-Dwelling Older Adults: A 1-Year Prospective Study. J Am Med Dir Assoc 2016;17:372.e5–8. https://doi.org/10.1016/j.jamda.2015.12.096.

    Article  Google Scholar 

  30. Alemán H, Esparza J, Ramirez FA, Astiazaran H, Payette H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing 2011;40:469–475. https://doi.org/10.1093/ageing/afr040.

    Article  PubMed  Google Scholar 

  31. Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res Rev 2020;64:101185. https://doi.org/10.1016/j.arr.2020.101185.

    Article  CAS  PubMed  Google Scholar 

  32. Schaap LA, Pluijm SM, Deeg DJ, et al. Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 2009;64:1183–1189. https://doi.org/10.1093/gerona/glp097.

    Article  PubMed  Google Scholar 

  33. Wright CB, Sacco RL, Rundek T, Delman J, Rabbani L, Elkind M. Interleukin-6 is associated with cognitive function: the Northern Manhattan study. J Stroke Cerebrovasc Dis 2006;15:34–38. https://doi.org/10.1016/j.jstrokecerebrovasdis.2005.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Baune BT, Ponath G, Golledge J, et al. Association between IL-8 cytokine and cognitive performance in an elderly general population—the MEMO-Study. Neurobiol Aging 2008;29:937–944. https://doi.org/10.1016/j.neurobiolaging.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  35. Yaffe K, Barnes D, Lindquist K, et al. Endogenous sex hormone levels and risk of cognitive decline in an older biracial cohort. Neurobiol Aging 2007;28:171–178. https://doi.org/10.1016/j.neurobiolaging.2006.10.004.

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 2019;15:383–392. https://doi.org/10.1038/s41574-019-0174-x.

    Article  PubMed  Google Scholar 

  37. Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH. Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 2019;471:491–505. https://doi.org/10.1007/s00424-019-02253-8.

    Article  CAS  PubMed  Google Scholar 

  38. Valenzuela PL, Castillo-García A, Morales JS, et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res Rev 2020;62:101108. https://doi.org/10.1016/j.arr.2020.101108.

    Article  CAS  PubMed  Google Scholar 

  39. Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab 2016;24:332–340. https://doi.org/10.1016/j.cmet.2016.05.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ando T, Uchida K, Sugimoto T, et al. ApoE4 is associated with lower body mass, particularly fat mass, in older women with cognitive impairment. Nutrients 2022;14:539. https://doi.org/10.3390/nu14030539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baumgartner RN, Waters DL, Gallagher D, Morley JE, Garry PJ. Predictors of skeletal muscle mass in elderly men and women. Mech Ageing Dev 1999;107:123–136. https://doi.org/10.1016/s0047-6374(98)00130-4.

    Article  CAS  PubMed  Google Scholar 

  42. Hansen RD. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS Study. Am J Clin Nutr 2005;81:1180–1181. https://doi.org/10.1093/ajcn/81.5.1180.

    Article  CAS  PubMed  Google Scholar 

  43. Yuki A, Otsuka R, Kozakai R, et al. Relationship between low free testosterone levels and loss of muscle mass. Sci Rep 2013;3:1818. https://doi.org/10.1038/srep01818.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hogervorst E, Bandelow S, Combrinck M, Smith AD. Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp Gerontol 2004;39:1633–1639. https://doi.org/10.1016/j.exger.2004.06.019.

    Article  CAS  PubMed  Google Scholar 

  45. Yaffe K, Lui LY, Zmuda J, Cauley J. Sex hormones and cognitive function in older men. J Am Geriatr Soc 2002;50:707–712. https://doi.org/10.1046/j.1532-5415.2002.50166.x.

    Article  PubMed  Google Scholar 

  46. Boss L, Kang DH, Marcus M, Bergstrom N. Endogenous sex hormones and cognitive function in older adults: a systematic review. West J Nurs Res 2014;36(3):388–426. https://doi.org/10.1177/0193945913500566.

    Article  PubMed  Google Scholar 

  47. Javed AA, Mayhew AJ, Shea AK, Raina P. Association Between Hormone Therapy and Muscle Mass in Postmenopausal Women: A Systematic Review and Meta-analysis. JAMA Netw Open 2019;2(8):e1910154. https://doi.org/10.1001/jamanetworkopen.2019.10154.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Steffl M, Bohannon RW, Sontakova L, Tufano JJ, Shiells K, Holmerova I. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging 2017;12:835–845. https://doi.org/10.2147/CIA.S132940.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cruz-Jentoft AJ, Gonzalez MC, Prado CM. Sarcopenia ± low muscle mass. Eur Geriatr Med 2023;14:225–228. https://doi.org/10.1007/s41999-023-00760-7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the study participants and our colleagues in the NILS-LSA for completing the surveys of this study and Enago (www.enago.jp) for the English language review.

Funding

Funding: This work was supported by The Research Funding for Longevity Sciences [grant numbers 22–2 and 22–23] from the National Center for Geriatrics and Gerontology. The funders had no role in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sakurai.

Ethics declarations

Conflict of interest: All authors report no conflicts of interest.

Ethical statement: The study complied with the Declaration of Helsinki and was approved by the Ethics Committee of Human Research at the National Center for Geriatrics and Gerontology, Japan (No. 1525). All participants provided written informed consent before study participation.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, K., Sugimoto, T., Tange, C. et al. Association between Reduction of Muscle Mass and Faster Declines in Global Cognition among Older People: A 4-Year Prospective Cohort Study. J Nutr Health Aging 27, 932–939 (2023). https://doi.org/10.1007/s12603-023-2007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-2007-9

Key words

Navigation