Skip to main content
Log in

High Dietary Zinc Intake Is Associated with Shorter Leukocyte Telomere Length, Mediated by Tumor Necrosis Factor-α: A Study of China Adults

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Diet can influence peripheral leukocyte telomere length (LTL), and various micronutrients have been reported to correlate with it. Zinc is known for its antioxidant properties and immunomodulatory effects. However, there are few epidemiological investigations on the relationship between dietary zinc intake and LTL. This study analyzed the association between dietary zinc and LTL and the potential role of inflammation and oxidative stress among them.

Design

Cross-sectional and community-based study.

Setting and Participants

599 participants from rural communities in the Changping suburb of Beijing, China, were recruited.

Measurements

Serum lipid profile, glycosylated hemoglobin (HbA1c), oxidative stress marker, and inflammatory cytokines levels were measured. Detailed dietary data were obtained using a 24 h food recall. LTL was assessed using a real-time PCR assay. Spearman analysis, restricted cubic splines (RCS), and general linear regression models were used to determine the association between dietary zinc intake and LTL. Simple regulatory models were also applied to analyze the role of inflammation and oxidative stress among them.

Results

A total of 482 subjects were ultimately included in this analysis. Spearman analysis showed that dietary zinc intake and zinc intake under energy density were negatively correlated with LTL (r=−0.142 and −0.126, all P <0.05) and positively correlated with tumor necrosis factor-α (TNF-α) (r=0.138 and 0.202, all P <0.05) while only dietary zinc without energy adjustment had a positive correlation with superoxide dismutase (SOD). RCS (P for non-linearity=0.933) and multiple linear regression (B=−0.084, P=0.009) indicated a negative linear association between dietary zinc and LTL. The adjustment of TNF-α rather than SOD could abolish the relationship. The mediation model suggested that the unfavorable effect of dietary zinc on LTL was mediated by TNF-α.

Conclusions

High dietary zinc may correlate with telomere attrition, and TNF-α can act as a mediator in this relationship. In the future, more extensive cohort studies are needed to further explore the relationship between dietary zinc and cellular aging and the specific mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 2015; 350: 1193–1198. doi: https://doi.org/10.1126/science.aab3389.

    Article  CAS  PubMed  Google Scholar 

  2. Riethmail H. Human telomere structure and biology. Annu Rev Genomics Hum Genet. 2008;9:1–19. doi: https://doi.org/10.1146/annurev.genom.8.021506.172017.

    Article  Google Scholar 

  3. Vaziri H, Dragowska W, Allsopp RC, et al. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91:9857–9860. doi:https://doi.org/10.1073/pnas.91.21.9857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao X, Yu X, Zhang C, Wang Y, Sun Y, Sun H, Zhang H, Shi Y, He X. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Rev Rep. 2022;18: 2315–2327. doi: https://doi.org/10.1007/s12015-022-10370-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, Jenkins AJ, Ma RCW. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 2021;9:117–126. doi:https://doi.org/10.1016/S2213-8587(20)30365-X.

    Article  CAS  PubMed  Google Scholar 

  6. Pauleck S, Sinnott JA, Zheng YL, Gadalla SM, Viskochil R, Haaland B, Cawthon RM, Hoffmeister A, Hardikar S. Association of Telomere Length with Colorectal Cancer Risk and Prognosis: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023 Feb 11;15(4):1159.

    Article  CAS  PubMed  Google Scholar 

  7. Valera-Gran D, Prieto-Botella D, Hurtado-Pomares M, et al. The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients 2022;14:3885. doi:https://doi.org/10.3390/nu14193885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu S, Baylin A, Ruiz-Narváez EA. Micro- and Macronutrient Intake in Elderly Costa Ricans: The Costa Rican Longevity and Healthy Aging Study (CRELES). Nutrients 2023;15:1446. doi:https://doi.org/10.3390/nu15061446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu J, Liu H, He S, et al. Dietary Magnesium Intake and Leukocyte Telomere Attrition in Adults: The Regulatory Role of Serum Tumor Necrosis Factor α. Mediators Inflamm. 2020; 2020:7610436. doi:https://doi.org/10.1155/2020/7610436.

    PubMed  PubMed Central  Google Scholar 

  10. Gong H, Yu Q, Yuan M, et al. The Relationship between Dietaiy Copper intake and Telomere Length in Hypertension. J Nutr Health Aging. 2022;26:510–514. doi: https://doi.org/10.1007/s12603-022-1787-7.

    Article  CAS  PubMed  Google Scholar 

  11. Roohani N., Hurrell R., Kelishadi R., et al. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013;18:144–157. doi.

    PubMed  PubMed Central  Google Scholar 

  12. Maywald M, Rink L. Zinc in Human Health and Infectious Diseases. Biomolecules 2022;12:1748. doi:https://doi.org/10.3390/biom12121748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kwon YJ, Lee HS, Park G, et al. Dietary Zinc Intake and All-Cause and Cardiovascular Mortality in Korean Middle-Aged and Older Adults. Nutrients 2023; 15:358. doi:https://doi.org/10.3390/nu15020358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He P, Li H, Liu M, et al. U-shaped Association Between Dietary Zinc Intake and New-onset Diabetes: A Nationwide Cohort Study in China. J Clin Endocrinol Metab. 2022;107:e815–e824. doi:https://doi.org/10.1210/clinem/dgab636.

    Article  PubMed  Google Scholar 

  15. Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol. 2023;44:217–230. doi:https://doi.org/10.1016/j.it.2023.01.003.

    Article  CAS  PubMed  Google Scholar 

  16. A. O’Donovan, M. S. Pantell, E. Puterman et al. Cumulative inflammatory load is associated with short leukocyte telomere length in the Health, Aging and Body Composition Study. PLoS One 2011;6:e19687. doi: https://doi.org/10.1371/journal.pone.0019687.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Armstrong E, Boonekamp J. Does oxidative stress shorten telomeres in vivo? A metaanalysis. Ageing Res Rev. 2023;85:101854.doi:https://doi.org/10.1016/j.arr.2023.101854.

    Article  CAS  PubMed  Google Scholar 

  18. Shi H, Li X, Yu H, Shi W, Lin Y, Zhou Y. Potential effect of dietary zinc intake on telomere length: A cross-sectional study of US adults. Front Nutr. 2022 16; 9: 993 425. doi:https://doi.org/10.3389/fnut.2022.993425.

    Google Scholar 

  19. Lee JY, Shin C, Baik I. Longitudinal associations between micronutrient consumption and leukocyte telomere length. J Hum Nutr Diet. 2017; 30: 236–243. doi: https://doi.org/10.1111/jhn.12403.

    Article  PubMed  Google Scholar 

  20. Milne E, O’Callaghan N, Ramankutty P, et al. Plasma micronutrient levels and telomere length in children. Nutrition. 2015;31:331–6. doi:https://doi.org/10.1016/j.nut.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  21. M. Zhou, L. Zhu, X. Cui et al. Influence of diet on leukocyte telomere length, markers of inflammation and oxidative stress in individuals with varied glucose tolerance: a Chinese population study. Nutr J. 2016;15:39. doi: https://doi.org/10.1186/s12937-016-0157-x.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Albertik G, Zimmetp Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–553. doi:https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S.

    Article  Google Scholar 

  23. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37:e21. doi:https://doi.org/10.1093/nar/gkn1027.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hayes, A. F. (2012). PROCESS: A Versatile Computational Tool for Observed Variable Mediation, Moderation, and Conditional Process Modeling 1. http://www.afhayes.com/public/process2012.pdf.

  25. Faul F, et al. Statistical power analyses using G*Power 264 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009; 41 265(4):1149–60. doi:https://doi.org/10.3758/BRM.41.4.1149.

    Article  PubMed  Google Scholar 

  26. Wang Y, Jia XF, Zhang B, et al. Dietary Zinc Intake and Its Association with Metabolic Syndrome Indicators among Chinese Adults: An Analysis of the China Nutritional Transition Cohort Survey 2015. Nutrients 2018;10:572. doi:https://doi.org/10.3390/nu10050572.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shim JS, Kim KN, Lee JS, et al. Dietary zinc intake and sources among Koreans: findings from the Korea National Health and Nutrition Examination Survey 2016–2019. Nutr Res Pract. 2023;17:257–268.doi:https://doi.org/10.4162/nrp.2023.17.2.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kark JD, Goldberger N, Kimura M, et al. Energy intake and leukocyte telomere length in young adults. Am J Clin Nutr. 2012;95(2):479–87. doi: https://doi.org/10.3945/ajcn.111.024521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ceylan MN, Akdas S, Yazihan N. The Effects of Zinc Supplementation on C-Reactive Protein and Inflammatory Cytokines: A Meta-Analysis and Systematical Review. J Interferon Cytokine Res. 2021;41:81–101. doi: https://doi.org/10.1089/jir.2020.0209.

    Article  CAS  PubMed  Google Scholar 

  30. Taneja SK, Mandal R, Girhotra S. Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet. Indian J Exp Biol. 2006;44(9):705–18. doi.

    CAS  PubMed  Google Scholar 

  31. Milton AH, Vashum KP, McEvoy M, et al. Prospective Study of Dietary Zinc Intake and Risk of Cardiovascular Disease in Women. Nutrients 2018;10:38. doi: https://doi.org/10.3390/nu10010038.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Drake I, Hindy G, Ericson U, et al. A prospective study of dietary and supplemental zinc intake and risk of type 2 diabetes depending on genetic variation in SLC30A8. Genes Nutr. 2017;12:30. doi: https://doi.org/10.1186/s12263-017-0586-y.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shi Z, Chu A, Zhen S, et al. Association between dietary zinc intake and mortality among Chinese adults: findings from 10-year follow-up in the Jiangsu Nutrition Study. Eur J Nutr. 2018;57:2839–2846. doi: https://doi.org/10.1007/s00394-017-1551-7.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu L, An P, Zhao W, et al. Low Zinc Alleviates the Progression of Thoracic Aortic Dissection by Inhibiting Inflammation. Nutrients 2023;15:1640. doi:https://doi.org/10.3390/nu15071640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li W, Yang X, Ding M, et al. Zinc accumulation aggravates cerebral ischemia/ reperfusion injury by promoting inflammation. Front Cell Neurosci. 2023; 17: 10658 73. doi:https://doi.org/10.3389/fncel.2023.1065873.

    Google Scholar 

  36. Akdas S, Turan B, Durak A, et al. The Relationship Between Metabolic Syndrome Development and Tissue Trace Elements Status and Inflammatory Markers. Biol Trace Elem Res. 2020;198:16–24. doi: https://doi.org/10.1007/s12011-020-02046-6.

    Article  CAS  PubMed  Google Scholar 

  37. Armstrong E, Boonekamp J. Does oxidative stress shorten telomeres in vivo? A meta-analysis. Ageing Res Rev. 2023;85:101854. doi: https://doi.org/10.1016/j.arr.2023.101854.

    Article  CAS  PubMed  Google Scholar 

  38. Yang Q, Yang J, Liu X, et al. Crosstalk Between the Mitochondrial Dynamics and Oxidative Stress in Zinc-induced Cytotoxicity. Biol Trace Elem Res. 2023;201(9): 4419–4428. doi: https://doi.org/10.1007/s12011-022-03504-z. Epub 2022 Nov 29.

    Article  CAS  PubMed  Google Scholar 

  39. Prasad AS, Bao B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants (Basel). 2019;8(6):164. doi: https://doi.org/10.3390/antiox8060164.

    Article  CAS  PubMed  Google Scholar 

  40. Bie YN, Gu P, Chen YT, et al. TZAP plays an inhibitory role in the self-renewal of porcine mesenchymal stromal cells and is implicated the regulation of premature senescence via the p53 pathway. J Transl Med. 2019 Mar 7;17(1):72. doi: https://doi.org/10.1186/s12967-019-1820-8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol. 2000;10(20):1299–302. doi: https://doi.org/10.1016/s0960-9822(00)00752-1.

    Article  CAS  PubMed  Google Scholar 

  42. Sharif R, Thomas P, Zalewski P, et al. The role of zinc in genomic stability. Mutat Res. 2012;733(1–2):111–21. doi: https://doi.org/10.1016/j.mrfmmm.2011.08.009. Epub 2011 Sep 16.

    Article  CAS  PubMed  Google Scholar 

  43. Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101: 294–301. doi: https://doi.org/10.1016/S0002-8223(01)00078-5.

    Article  CAS  PubMed  Google Scholar 

  44. Wang Y, Sun X, Ma H, et al. Iron, Zinc and Copper from Cereal Food Sources and Cognitive Performance in Older Adults in China. Iran J Public Health. 2021; 50(12): 2546–2554. doi: https://doi.org/10.18502/ijph.v50i12.7937.

    PubMed  PubMed Central  Google Scholar 

  45. de Oliveira Otto MC, Alonso A, Lee DH, et al. Dietary intakes of zinc and heme iron from red meat, but not from other sources, are associated with greater risk of metabolic syndrome and cardiovascular disease. J Nutr. 2012;142:526–33. doi:https://doi.org/10.3945/jn.111.149781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to all of the participants in this study. The authors’ responsibilities were as follows–BD Xing, HB Zhang, YX Li: designed the research; BD Xing, J Yu, YW Liu, XY Chen, ZY Li, LY He, N Yang: helped to organize the data; SLH: calculated the nutrient related data; BD Xing, J Yu, HB Zhang analyzed the data; BD Xing wrote the paper; LL Xu, F Ping, W Li gave instruction to data analyses: W Li and YX Li reviewed and edited the manuscript. All authors read and approved the final manuscript.

Funding

Funding: This research is supported by National High Level Hospital Clinical Research Funding (2022-PUMCH-B-015) and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CIFMS,2021-I2M-1-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li, Huabing Zhang or Yuxiu Li.

Ethics declarations

Conflict of interests: All authors declare that they have no conflict of interests.

Ethical standards: The study was complied with the Declaration of Helsinki and approved by the Ethics Committee of Peking Union Medical College Hospital.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, B., Yu, J., Liu, Y. et al. High Dietary Zinc Intake Is Associated with Shorter Leukocyte Telomere Length, Mediated by Tumor Necrosis Factor-α: A Study of China Adults. J Nutr Health Aging 27, 904–910 (2023). https://doi.org/10.1007/s12603-023-1992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-1992-z

Key words

Navigation