Skip to main content
Log in

Sex Specific Global Burden of Osteoporosis in 204 Countries and Territories, from 1990 to 2030: An Age-Period-Cohort Modeling Study

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Background

Osteoporosis is a highly prevalent disease with distinct sex pattern. We aimed to estimate the sex specific incidence, prevalence, and disability-adjusted life (DALYs) years of osteoporosis between 1990 and 2019, with additional predictions from 2020 to 2034.

Methods

We collected osteoporosis disease burden data from the Global Burden of Disease study covering the years 1990 through 2019 in 204 countries and territories. The data included information on the number of incident cases of osteoporosis, DALYs, age-standardized incidence rates (ASIR), age-standardized prevalence rates (ASPR) and age-standardized DALYs rates. Additionally, we performed an age-period-cohort analysis to forecast the burden of osteoporosis.

Results

The global number of incidence cases of osteoporosis, in 2019, reached 41.5 million cases. From 1990 to 2019, the low-middle socio-demographic index (SDI) region had the highest estimated annual percentage change in the world. Compared to males, female’s ASIR and ASPR were all about 1.5 times higher than males for the same years in the same SDI regions. The projected global total number of incidence cases for osteoporosis between 2030 and 2034 is estimated to reach 263.2 million (154.4 million for females and 108.8 for males). Additionally, the burden in terms of DALYs is predicted to be 128.7 million (with 78.4 million for females and 50.3 million for males).

Conclusion

The global burden of osteoporosis is still increasing, mainly observed in high SDI countries. Females bear a burden 1.5 times higher than males in terms of incidence and DALYs. Steps should be taken to reduce the osteoporosis burden, especially in high SDI countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Availability of data and materials: The datasets generated and/or analyzed during the current study are available in the https://vizhub.healthdata.org/gbd-results/, and no permissions were required to access the data.

References

  1. Lane JM. Osteoporosis. Medical prevention and treatment. Spine (Phila Pa 1976). Dec 15 1997;22 (24 Suppl):32s–37s. doi:https://doi.org/10.1097/00007632-199712151-00006

    Article  CAS  PubMed  Google Scholar 

  2. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. Feb 2006;194 (2 Suppl):S3–11. doi:https://doi.org/10.1016/j.ajog.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  3. Incidence & Prevalence Database (IPD). https://www.tdrdata.com/ipd/ipd_init

  4. Salari N, Ghasemi H, Mohammadi L, et al. The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. Oct 17 2021;16(1):609. doi:https://doi.org/10.1186/s13018-021-02772-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cousin E, Duncan BB, Stein C, et al. Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019. The Lancet Diabetes & Endocrinology. 2022;10(3):177–192. doi:https://doi.org/10.1016/s2213-8587(21)00349-1

    Article  Google Scholar 

  6. Liu M, Xia P, Tan Z, et al. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: A systematic review and dose-response meta-analysis. (2297-055X (Print))

  7. Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. Oct 17 2020;396(10258):1204–1222. doi:https://doi.org/10.1016/S0140-6736(20)30925-9

    Article  Google Scholar 

  8. Wang Z, Bao J, Yu C, Wang J, Li C. Secular Trends of Breast Cancer in China, South Korea, Japan and the United States: Application of the Age-Period-Cohort Analysis. Int J Environ Res Public Health. Dec 4 2015;12(12):15409–18. doi:https://doi.org/10.3390/ijerph121214993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cvijetić S, Grazio S, Kastelan D, Korsić M. [Epidemiology of osteoporosis]. Arh Hig Rada Toksikol. Mar 2007;58(1):13–8. Epidemiologija osteoporoze. doi:https://doi.org/10.2478/v10004-007-0002-x

    Article  PubMed  Google Scholar 

  10. Wang Y, Tao Y, Hyman ME, Li J, Chen Y. Osteoporosis in china. Osteoporos Int. Oct 2009;20(10):1651–62. doi:https://doi.org/10.1007/s00198-009-0925-y

    Article  CAS  PubMed  Google Scholar 

  11. Holt G, Khaw KT, Reid DM, et al. Prevalence of osteoporotic bone mineral density at the hip in Britain differs substantially from the US over 50 years of age: implications for clinical densitometry. Br J Radiol. Sep 2002;75(897):736–42. doi:https://doi.org/10.1259/bjr.75.897.750736

    Article  CAS  PubMed  Google Scholar 

  12. Looker AC, Orwoll ES, Johnston CC, Jr., et al. Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. Nov 1997;12(11):1761–8. doi:https://doi.org/10.1359/jbmr.1997.12.11.1761

    Article  CAS  PubMed  Google Scholar 

  13. Melton LJ, 3rd. The prevalence of osteoporosis: gender and racial comparison. Calcif Tissue Int. Oct 2001;69(4):179–81. doi:https://doi.org/10.1007/s00223-001-1043-9

    Article  CAS  PubMed  Google Scholar 

  14. Vilaca T, Gossiel F, Eastell R. Bone Turnover Markers: Use in Fracture Prediction. J Clin Densitom. Jul–Sep 2017;20(3):346–352. doi:https://doi.org/10.1016/j.jocd.2017.06.020

    Article  PubMed  Google Scholar 

  15. Vilayphiou N, Boutroy S, Sornay-Rendu E, Van Rietbergen B, Chapurlat R. Age-related changes in bone strength from HR-pQCT derived microarchitectural parameters with an emphasis on the role of cortical porosity. Bone. Feb 2016;83:233–240. doi:https://doi.org/10.1016/j.bone.2015.10.012

    Article  PubMed  Google Scholar 

  16. Leslie WD, Lix LM, Morin SN, et al. Adjusting Hip Fracture Probability in Men and Women Using Hip Axis Length: the Manitoba Bone Density Database. J Clin Densitom. Jul–Sep 2016;19(3):326–31. doi:https://doi.org/10.1016/j.jocd.2015.07.004

    Article  PubMed  Google Scholar 

  17. Malkov S, Cawthon PM, Peters KW, et al. Hip Fractures Risk in Older Men and Women Associated With DXA-Derived Measures of Thigh Subcutaneous Fat Thickness, Cross-Sectional Muscle Area, and Muscle Density. J Bone Miner Res. Aug 2015;30(8):1414–21. doi:https://doi.org/10.1002/jbmr.2469

    Article  CAS  PubMed  Google Scholar 

  18. Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int. Feb 2012;23(2):401–10. doi:https://doi.org/10.1007/s00198-011-1671-5

    Article  CAS  PubMed  Google Scholar 

  19. Curtis EM, Murray R, Titcombe P, et al. Perinatal DNA Methylation at CDKN2A Is Associated With Offspring Bone Mass: Findings From the Southampton Women’s Survey. J Bone Miner Res. Oct 2017;32(10):2030–2040. doi:https://doi.org/10.1002/jbmr.3153

    Article  CAS  PubMed  Google Scholar 

  20. Morris JA, Tsai PC, Joehanes R, et al. Epigenome-wide Association of DNA Methylation in Whole Blood With Bone Mineral Density. J Bone Miner Res. Aug 2017;32(8):1644–1650. doi:https://doi.org/10.1002/jbmr.3148

    Article  CAS  PubMed  Google Scholar 

  21. Yu B, Wang CY. Osteoporosis: The Result of an ‘Aged’ Bone Microenvironment. Trends Mol Med. Aug 2016;22(8):641–644. doi:https://doi.org/10.1016/j.molmed.2016.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aspray TJ, Hill TR. Osteoporosis and the Ageing Skeleton. Subcell Biochem. 2019;91:453–476. doi:https://doi.org/10.1007/978-981-13-3681-2_16

    Article  CAS  PubMed  Google Scholar 

  23. Farr JN, Almeida M. The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. J Bone Miner Res. Sep 2018;33(9):1568–1584. doi:https://doi.org/10.1002/jbmr.3564

    Article  PubMed  Google Scholar 

  24. Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel GA, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: A proposed process and prioritization. Aging Cell. Apr 2022;21(4):e13596. doi:https://doi.org/10.1111/acel.13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. Sep 11 2012;22(17):R741–52. doi:https://doi.org/10.1016/j.cub.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  26. Le Couteur DG, Barzilai N. New horizons in life extension, healthspan extension and exceptional longevity. Age Ageing. Aug 2 2022;51(8)doi:https://doi.org/10.1093/ageing/afac156

  27. Jones D, Song X, Mitnitski A, Rockwood K. Evaluation of a frailty index based on a comprehensive geriatric assessment in a population based study of elderly Canadians. Aging Clin Exp Res. Dec 2005;17(6):465–71. doi:https://doi.org/10.1007/bf03327413

    Article  PubMed  Google Scholar 

  28. Johansen A, Boulton C, Hertz K, et al. The National Hip Fracture Database (NHFD) -Using a national clinical audit to raise standards of nursing care. Int J Orthop Trauma Nurs. Aug 2017;26:3–6. doi:https://doi.org/10.1016/j.ijotn.2017.01.001

    Article  PubMed  Google Scholar 

  29. Neuburger J, Currie C, Wakeman R, et al. Safe working in a 7-day service. Experience of hip fracture care as documented by the UK National Hip Fracture Database. Age Ageing. Sep 1 2018;47(5):741–745. doi:https://doi.org/10.1093/ageing/afy074

    Article  PubMed  Google Scholar 

  30. Chen P, Li Z, Hu Y. Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health. Oct 3 2016;16(1):1039. doi:https://doi.org/10.1186/s12889-016-3712-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment: None

Funding

Funding: This work was supported by the Natural Science Foundation of Jiangxi Province (No. 20212BAB216051 to J.Z., No. 20212BAB216047 to P.Y.); the Jiangxi Province Thousands of Plans (No. jxsq2023201105 to P.Y.); and the Hengrui Diabetes Metabolism Research Fund (No. Z-2017-26-2202-4 to P.Y.); and the National Natural Science Foundation of China (nos. 82160371 to J.Z. and nos. 82100869 to P.Y., nos. 82100347 to X. L. no. 21866019), National High Technology Research and Development Program of Guangzhou (nos. 20180304001 and nos. 2019GZR110406004 to J. F-W), Natural Science Foundation of Guangdong Province (nos. 2022A1515010582 and nos. 202201011395 to X. and Science and Technology Projects in Guangzhou (nos. 202102010007 to J.F-W), China Postdoctoral Science Foundation (Nos. 2021M703724).

Author information

Authors and Affiliations

Authors

Contributions

Author contribution: Z.C-Z: Methodology, Software, Formal Analysis, Data Curation, Writing - Original Draft. Methodology, Investigation, Data curation. Z.Q-T: Writing. Y.T-W: Methodology, Investigation. Y.F-W: Methodology, Investigation, Data curation. J.Y-M: Methodology, Investigation, J.T-L: Methodology, Data curation. P-Y: Methodology, Investigation. W.G-Z: Review & Editing. J-Z and X-L: Conceptualization, Methodology, Writing - Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Jing Zhang or Xiao Liu.

Ethics declarations

Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Conflict interest: The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Yu, P., Wu, Y. et al. Sex Specific Global Burden of Osteoporosis in 204 Countries and Territories, from 1990 to 2030: An Age-Period-Cohort Modeling Study. J Nutr Health Aging 27, 767–774 (2023). https://doi.org/10.1007/s12603-023-1971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-1971-4

Key words

Navigation