Skip to main content
Log in

Famine Exposure during Early Life and Risk of Cancer in Adulthood: A Systematic Review and Meta-Analysis

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Emerging evidences have explored the association between famine exposure during early life and cancer risk in adulthood, but the results remain controversial and inconsistent. This study aimed to provide a comprehensive evidence on the relation of famine exposure to later cancer risk.

Design

Systematic review and meta-analysis.

Methods

Relevant reports published up to March, 2022 were identified by searching PubMed, Embase, Web of sciences and Medline databases. Pooled relative ratios (RRs) with 95% confidence intervals (CIs) were used to evaluate the effect famine exposure on cancer risk.

Results

Totally, 18 published articles with 6,061,147 subjects were included in this study. Compared with unexposed group, early life famine exposure dramatically increased the risk of cancer in adulthood (RR=1.13, 95% CI: 1.04–1.22). The pooled RRs were different in terms of sex, exposure severity, exposure period, famine type, study design type and cancer location. A remarkably elevated risk for cancer was discerned in women exposed to famine (RR=1.09, 95% CI: 1.00–1.18), severe exposure (RR=1.12, 95% CI: 1.02–1.22) and adolescence exposure (RR=1.76, 95% CI: 1.02–2.50), Chinese famine exposure (RR=1.55, 95% CI: 1.29–1.82) and cohort studies (RR=1.28, 95% CI: 1.13–1.42). Moreover, a significant association of early-life famine exposure with increased risk of breast (RR=1.16, 95% CI: 1.05–1.27) and stomach cancers (RR=1.89, 95% CI: 1.24–2.54) was observed.

Conclusion

This meta-analysis suggests that exposure to famine during early life may increase the risk of cancer in adulthood. The above-mentioned association is pronounced in women exposed to famine, severe exposure, adolescence exposure, Chinese famine, cohort studies, breast and stomach cancers. It is essential for decision-makers to take targeted measures for improving population awareness regarding the long-term effect of early life nutritional status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2A
Figure 2B
Figure 2C
Figure 2D
Figure 2E
Figure 3

Similar content being viewed by others

References

  1. Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022;8(3):420–444. doi: https://doi.org/10.1001/jamaoncol.2021.6987

    Google Scholar 

  2. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021;134(7):783–791. doi: https://doi.org/10.1097/CM9.0000000000001474

    PubMed  Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi: https://doi.org/10.3322/caac.21660

    PubMed  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: https://doi.org/10.3322/caac.21492

    PubMed  Google Scholar 

  5. Zhang S, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2015. J Natl Cancer Center. 2021;1(1):2–11. doi: https://doi.org/10.1016/j.jncc.2020.12.001

    CAS  Google Scholar 

  6. Pullar J, Wickramasinghe K, Demaio AR, et al. The impact of maternal nutrition on offspring’s risk of non-communicable diseases in adulthood: a systematic review. J Glob Health. 2019;9(2):020405. doi: https://doi.org/10.7189/jogh.09.020405

    PubMed  PubMed Central  Google Scholar 

  7. Lumey LH, Stein AD, Susser E. Prenatal famine and adult health. Annu Rev Public Health. 2011;32:237–62. doi: https://doi.org/10.1146/annurev-publhealth-031210-101230

    CAS  PubMed  Google Scholar 

  8. Li C, Lumey LH. Exposure to the Chinese famine of 1959–61 in early life and long-term health conditions: a systematic review and meta-analysis. Int J Epidemiol. 2017;46(4):1157–1170. doi: https://doi.org/10.1093/ije/dyx013

    PubMed  Google Scholar 

  9. Wells JC. Worldwide variability in growth and its association with health: incorporating body composition, developmental plasticity, and intergenerational effects. Am J Hum Biol. 2017;29(2):1–16. doi: https://doi.org/10.1002/ajhb.22954

    Google Scholar 

  10. Zhou J, Sheng J, Fan Y, et al. The effect of Chinese famine exposure in early life on dietary patterns and chronic diseases of adults. Public Health Nutr. 2019;22(4):603–613. doi: https://doi.org/10.1017/S1368980018003440

    PubMed  Google Scholar 

  11. Zhou J, Zhang L, Xuan P, et al. The relationship between famine exposure during early life and body mass index in adulthood: A systematic review and meta-analysis. PLoS One. 2018;13(2):e0192212. doi: https://doi.org/10.1371/journal.pone.0192212

    PubMed  PubMed Central  Google Scholar 

  12. Liu H, Chen X, Shi T, et al. Association of famine exposure with the risk of type 2 diabetes: A meta-analysis. Clin Nutr. 2020;39(6):1717–1723. doi: https://doi.org/10.1016/j.clnu.2019.08.002

    PubMed  Google Scholar 

  13. Xin X, Yao J, Yang F, Zhang D. Famine exposure during early life and risk of hypertension in adulthood: A meta-analysis. Crit Rev Food Sci Nutr. 2018;58(14):2306–2313. doi: https://doi.org/10.1080/10408398.2017.1322551

    PubMed  Google Scholar 

  14. Qin LL, Luo BA, Gao F, Feng XL, Liu JH. Effect of exposure to famine during early life on risk of metabolic syndrome in adulthood: a meta-analysis. J Diabetes Res. 2020;2020:3251275. doi: https://doi.org/10.1155/2020/3251275

    PubMed  PubMed Central  Google Scholar 

  15. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA. Obesity and cancer mechanisms: tumor microenvironment and inflammation. J Clin Oncol. 2016;34(35):4270–4276. doi: https://doi.org/10.1200/JCO.2016.67.4283

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shlomai G, Neel B, LeRoith D, Gallagher EJ. Type 2 diabetes mellitus and cancer: the pole of pharmacotherapy. J Clin Oncol. 2016;34(35):4261–4269. doi: https://doi.org/10.1200/JCO.2016.67.4044

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stocks T, Van Hemelrijck M, Manjer J, et al. Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project. Hypertension. 2012;59(4):802–10. doi: https://doi.org/10.1161/HYPERTENSIONAHA.111.189258

    CAS  PubMed  Google Scholar 

  18. Esposito K, Chiodini P, Colao A, Lenzi A, Giugliano D. Metabolic syndrome and risk of cancer: a systematic review and meta-analysis. Diabetes Care. 2012;35(11):2402–11. doi: https://doi.org/10.2337/dc12-0336

    PubMed  PubMed Central  Google Scholar 

  19. Boekelheide K, Blumberg B, Chapin RE, et al. Predicting later-life outcomes of early-life exposures. Environ Health Perspect. 2012;120:1353–61. doi: https://doi.org/10.1289/ehp.1204934

    PubMed  PubMed Central  Google Scholar 

  20. Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015;7(2):922–47. doi: https://doi.org/10.3390/nu7020922

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vin Raviv N, Dekel R, Barchana M, Linn S, Keinan-Boker L. World War II related post-traumatic stress disorder and breast cancer risk among Israeli women: a case-control study. Int Psychogeriatr. 2014;26(3):499–508. doi: https://doi.org/10.1017/S1041610213002081

    PubMed  Google Scholar 

  22. Fu SS, McFall M, Saxon AJ, et al. Post-traumatic stress disorder and smoking: a systematic review. Nicotine Tob Res. 2007;9(11):1071–84. doi: https://doi.org/10.1080/14622200701488418

    PubMed  Google Scholar 

  23. Jacobsen LK, Southwick SM, Kosten TR. Substance use disorders in patients with posttraumatic stress disorder: a review of the literature. Am J Psychiatry. 2001;158(8):1184–90. doi: https://doi.org/10.1176/appi.ajp.158.8.1184

    CAS  PubMed  Google Scholar 

  24. Wolf EJ, Bovin MJ, Green JD, et al. Longitudinal associations between post-traumatic stress disorder and metabolic syndrome severity. Psychol Med. 2016;46(10):2215–26. doi: https://doi.org/10.1017/S0033291716000817

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ebrahimi R, Lynch KE, Beckham JC, et al. Association of posttraumatic stress disorder and incident ischemic heart disease in women veterans. JAMA Cardiol. 2021;6(6):642–651. doi: https://doi.org/10.1001/jamacardio.2021.0227

    PubMed  PubMed Central  Google Scholar 

  26. Shen H, Gelaye B, Huang H, Rondon MB, Sanchez S, Duncan LE. Polygenic prediction and GWAS of depression, PTSD, and suicidal ideation/self-harm in a Peruvian cohort. Neuropsychopharmacology. 2020;45(10):1595–1602. doi: https://doi.org/10.1038/s41386-020-0603-5

    PubMed  PubMed Central  Google Scholar 

  27. Ziegler JL, Buonaguro FM. Infectious agents and human malignancies. Front Biosci. 2009;14:3455–3464. doi: https://doi.org/10.2741/3464

    CAS  Google Scholar 

  28. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–605. doi: https://doi.org/10.1007/s10654-010-9491-z

    PubMed  Google Scholar 

  29. Zhou J, Lin Y, Liu Y, Chen K. Antibiotic exposure and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2021;28(46):65052–65061. doi: https://doi.org/10.1007/s11356-021-16781-3

    CAS  PubMed  Google Scholar 

  30. Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011;342:d671. doi: https://doi.org/10.1136/bmj.d671

    PubMed  PubMed Central  Google Scholar 

  31. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol. 2005;28:123–37. doi: https://doi.org/10.1002/gepi.20048

    PubMed  Google Scholar 

  32. Painter RC, De Rooij SR, Bossuyt PM, et al. A possible link between prenatal exposure to famine and breast cancer: a preliminary study. Am J Hum Biol. 2006;18(6):853–6. doi: https://doi.org/10.1002/ajhb.20564

    CAS  PubMed  Google Scholar 

  33. Elias SG, Peeters PH, Grobbee DE, van Noord PA. Breast cancer risk after caloric restriction during the 1944–1945 Dutch famine. J Natl Cancer Inst. 2004;96(7):539–46. doi: https://doi.org/10.1093/jnci/djh087

    PubMed  Google Scholar 

  34. Hughes LA, van den Brandt PA, Goldbohm RA, et al. Childhood and adolescent energy restriction and subsequent colorectal cancer risk: results from the Netherlands Cohort Study. Int J Epidemiol. 2010;39(5):1333–44. doi: https://doi.org/10.1093/ije/dyq062

    PubMed  Google Scholar 

  35. Dirx MJ, van den Brandt PA, Goldbohm RA, Lumey LH. Diet in adolescence and the risk of breast cancer: results of the Netherlands Cohort Study. Cancer Causes Control. 1999;10(3):189–99. doi: https://doi.org/10.1023/a:1008821524297

    CAS  PubMed  Google Scholar 

  36. Elands RJJ, Offermans NSM, Simons CCJM, et al. Associations of adult-attained height and early life energy restriction with postmenopausal breast cancer risk according to estrogen and progesterone receptor status. Int J Cancer. 2019;144(8):1844–1857. doi: https://doi.org/10.1002/ijc.31890

    CAS  PubMed  Google Scholar 

  37. Meng R, Yu C, Guo Y, et al. Early famine exposure and adult disease risk based on a 10-year prospective study of Chinese adults. Heart. 2020;106(3):213–220. doi: https://doi.org/10.1136/heartjnl-2019-315750

    PubMed  Google Scholar 

  38. Jenniskens JCA, Offermans K, Simons CCJM, et al. Energy balance-related factors in childhood and adolescence and risk of colorectal cancer expressing different levels of proteins involved in the Warburg-effect. Int J Cancer. 2022;150(11):1812–1824. doi: https://doi.org/10.1002/ijc.33941

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Wang G, Forman MR, et al. In utero and childhood exposure to the Great Chinese Famine and risk of cancer in adulthood: the Kailuan Study. Am J Clin Nutr. 2021;114(6):2017–2024. doi: https://doi.org/10.1093/ajcn/nqab282

    PubMed  Google Scholar 

  40. He D, Fang Y, Gunter MJ, et al. Incidence of breast cancer in Chinese women exposed to the 1959–1961 great Chinese famine. BMC Cancer. 2017;17(1):824. doi: https://doi.org/10.1186/s12885-017-3794-3

    PubMed  PubMed Central  Google Scholar 

  41. Li QD, Li H, Li FJ, et al. Nutrition deficiency increases the risk of stomach cancer mortality. BMC Cancer. 2012;12:315. doi: https://doi.org/10.1186/1471-2407-12-315

    PubMed  PubMed Central  Google Scholar 

  42. Brand MP, Peeters PH, van Gils CH, Elias SG. Pre-adult famine exposure and subsequent colorectal cancer risk in women. Int J Epidemiol. 2017;46(2):612–621. doi: https://doi.org/10.1093/ije/dyw121

    PubMed  Google Scholar 

  43. Ekamper P, van Poppel F, Stein AD, Bijwaard GE, Lumey LH. Prenatal famine exposure and adult mortality from cancer, cardiovascular disease, and other causes through age 63 years. Am J Epidemiol. 2015;181(4):271–9. doi: https://doi.org/10.1093/aje/kwu288

    PubMed  PubMed Central  Google Scholar 

  44. van Abeelen AF, Veenendaal MV, Painter RC, et al. Survival effects of prenatal famine exposure. Am J Clin Nutr. 2012;95(1):179–83. doi: https://doi.org/10.3945/ajcn.111.022038

    CAS  PubMed  Google Scholar 

  45. Elias SG, Peeters PH, Grobbee DE, van Noord PA. The 1944–1945 Dutch famine and subsequent overall cancer incidence. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1981–5. doi: https://doi.org/10.1158/1055-9965.EPI-04-0839

    PubMed  Google Scholar 

  46. Alimujiang A, Mo M, Liu Y, et al. The association between China’s Great famine and risk of breast cancer according to hormone receptor status: a hospital-based study. Breast Cancer Res Treat. 2016;160(2):361–369. doi: https://doi.org/10.1007/s10549-016-3994-6

    CAS  PubMed  Google Scholar 

  47. Schouten LJ, van Dijk BA, Lumey LH, Goldbohm RA, van den Brandt PA. Energy restriction during childhood and early adulthood and ovarian cancer risk. PLoS One. 2011;6(11):e27960. doi: https://doi.org/10.1371/journal.pone.0027960

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dirx MJ, van den Brandt PA, Goldbohm RA, Lumey LH. Energy restriction early in life and colon carcinoma risk: results of The Netherlands Cohort Study after 7.3 years of follow-up. Cancer. 2003;97(1):46–55. doi: https://doi.org/10.1002/cncr.11052

    PubMed  Google Scholar 

  49. Dirx MJ, van den Brandt PA, Goldbohm RA, Lumey LH. Energy restriction in childhood and adolescence and risk of prostate cancer: results from the Netherlands Cohort Study. Am J Epidemiol. 2001;154(6):530–7. doi: https://doi.org/10.1093/aje/154.6.530

    CAS  PubMed  Google Scholar 

  50. Munafo MR, Clark TG, Flint J. Assessing publication bias in genetic association studies: evidence from a recent meta-analysis. Psychiatry Res. 2004;129:39–44. doi: https://doi.org/10.1016/j.psychres.2004.06.011

    PubMed  Google Scholar 

  51. Pei YF, Tian Q, Zhang L, Deng HW. Exploring the major sources and extent of heterogeneity in a genome-wide association meta-analysis. Ann Hum Genet. 2016;80(2):113–22. doi: https://doi.org/10.1111/ahg.12143

    CAS  PubMed  Google Scholar 

  52. Yeung C, Hilton J, Clemons M, et al. Estrogen, progesterone, and HER2/neu receptor discordance between primary and metastatic breast tumours-a review. Cancer Metastasis Rev. 2016;35(3):427–37. doi: https://doi.org/10.1007/s10555-016-9631-3

    CAS  PubMed  Google Scholar 

  53. Victora CG, Adair L, Fall C, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371(9609):340–57. doi: https://doi.org/10.1016/S0140-6736(07)61692-4

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Susser E, St Clair D. Prenatal famine and adult mental illness: interpreting concordant and discordant results from the Dutch and Chinese Famines. Soc Sci Med. 2013;97:325–30. doi: https://doi.org/10.1016/j.socscimed.2013.02.049

    PubMed  Google Scholar 

  55. Marti H, Carcaillon L, Chavance M. Multiple imputation for estimating hazard ratios and predictive abilities in case-cohort surveys. BMC Med Res Methodol. 2012;12:24. doi: https://doi.org/10.1186/1471-2288-12-24

    PubMed  PubMed Central  Google Scholar 

  56. Lawless JF. Two-phase outcome-dependent studies for failure times and testing for effects of expensive covariates. Lifetime Data Anal. 2018;24(1):28–44. doi: https://doi.org/10.1007/s10985-016-9386-8

    CAS  PubMed  Google Scholar 

  57. Dey T, Mukherjee A, Chakraborty S. A practical overview of case-control studies in clinical practice. Chest. 2020;158(1S):S57–S64. doi: https://doi.org/10.1016/j.chest.2020.03.009

    PubMed  Google Scholar 

  58. Elias SG, Keinan-Boker L, Peeters PH, et al. Long term consequences of the 1944–1945 Dutch famine on the insulin-like growth factor axis. Int J Cancer. 2004;108:628–30. doi: https://doi.org/10.1002/ijc.11584

    CAS  PubMed  Google Scholar 

  59. Elias SG, Onland-Moret NC, Peeters PH, et al. Urinary endogenous sex hormone levels in postmenopausal women after caloric restriction in young adulthood. Br J Cancer. 2004;90:115–7. doi: https://doi.org/10.1038/sj.bjc.6601513

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Murphy N, Knuppel A, Papadimitriou N, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ∼430 000 women. Ann Oncol. 2020;31(5):641–649. doi: https://doi.org/10.1016/j.annonc.2020.01.066

    CAS  PubMed  Google Scholar 

  61. Arthur RS, Dannenberg AJ, Rohan TE. The association of prediagnostic circulating levels of cardiometabolic markers, testosterone and sex hormone-binding globulin with risk of breast cancer among normal weight postmenopausal women in the UK Biobank. Int J Cancer. 2021;149(1):42–57. doi: https://doi.org/10.1002/ijc.33508

    CAS  PubMed  Google Scholar 

  62. Mendoza E, Duque X, Hernández Franco JI, et al. Association between active H. pylori infection and iron deficiency assessed by serum Hepcidin levels in school-age children. Nutrients. 2019;11(9):2141. doi: https://doi.org/10.3390/nu11092141

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang F, Meng W, Wang B, Qiao L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345(2):196–202. doi: https://doi.org/10.1016/j.canlet.2013.08.016

    CAS  PubMed  Google Scholar 

  64. Lee YC, Chiang TH, Chou CK, et al. Association between Helicobacter pylori eradication and gastric cancer incidence: A systematic review and meta-analysis. Gastroenterology. 2016;150(5):1113–1124. doi: https://doi.org/10.1053/j.gastro.2016.01.028

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants and teaching staff from Anhui Provincial Cancer Hospital for their assistance and support.

Funding

Funding sources This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Liu or Suyi Li.

Ethics declarations

Declaration of interest: The authors have no relevant interests to declare.

Ethical standard: This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Dai, Y., Zuo, Z. et al. Famine Exposure during Early Life and Risk of Cancer in Adulthood: A Systematic Review and Meta-Analysis. J Nutr Health Aging 27, 550–558 (2023). https://doi.org/10.1007/s12603-023-1947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-1947-4

Key words

Navigation