Skip to main content
Log in

Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults in the United States: The NHANES 2011–2014

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Oxidative stress level takes part in the development of cognitive decline. However, the association between total antioxidant capacity (TAC) from diet and cognitive function is controversial. The aim of this study was to investigate the relationship between TAC and the cognitive function of older adults in the U.S.

Design

A cross-sectional study.

Setting

National Health and Nutrition Examination Surveys database.

Participants

2712 older adults aged over 60 years.

Measurements

TAC was calculated from 8 antioxidative vitamins based on the reference values for vitamin C equivalent antioxidant capacity obtained from individuals’ 24 h dietary recall. Four memory-related assessments were employed [Immediate Recall test (IRT), Delayed Recall test (DRT), Animal Fluency test (AFT), and Digit Symbol Substitution test (DSST)].

Results

Among the 2712 participants, the median age was 68 years, and 50.4% were women. Participants in the group with higher TAC levels had relatively higher IRT, AFT and DSST scores (P=0.025, P=0.008, P<0.001, respectively). In adjusted weighted linear regression, log-transformed TAC was positively associated with AFT (β=1.10, 95%CI: 0.51, 1.70) and DSST (β=2.81, 95%CI: 1.16, 4.45). Compared with the first quartile, the participants in the second (Q2 vs. Q1, OR=0.66, 95%CI: 0.43,1.02) and fourth quartile (Q4 vs. Q1, OR=0.47, 95%CI:0.28, 0.78) of log-transformed TAC showed a decreased risk of impaired cognitive function (ICF) after adjusting for confounders. The dose-response analysis indicated a gradual descent in the risk of ICF as TAC increases. Diabetes mellitus (DM) mediated part of the effect of TAC on ICF. The relationship between TAC and ICF was more pronounced in subjects with DM (Q4 vs Q1, OR=0.36, 95%CI:0.17, 0.74).

Conclusion

Our findings support that higher dietary antioxidant potential was related to a decreased risk of cognitive dysfunction, particularly in the subjects with DM who may have oxidative injury. DM was one of the factors mediating the effect of TAC on ICF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

Data Availability Statement: The data of this study was available from NHANES website (https://www.cdc.gov/nchs/nhanes/). All data generated or analyzed during this study are included in this published article.

References

  1. Konagaya Y, Watanabe T, Ohta T, Takata K. Relationship between Quality of Life (QOL) and cognitive function among community-dwelling elderly. Nihon Ronen Igakkai Zasshi. 2009;46(2):160–7. DOI: https://doi.org/10.3143/geriatrics.46.160.

    Article  PubMed  Google Scholar 

  2. Xu X, Phua A, Collinson SL, Hilal S, Ikram MK, Wong TY, et al. Additive effect of cerebral atrophy on cognition in dementia-free elderly with cerebrovascular disease. Stroke and vascular neurology. 2019;4(3):135–40. DOI: https://doi.org/10.1136/svn-2018-000202. https://doi.org/10.1212/01.CON.0000466656.59413.29.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Owolabi MO, Thrift AG, Mahal A, Ishida M, Martins S, Johnson WD, et al. Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health. 2022;7(1):e74–e85. DOI: https://doi.org/10.1016/S2468-2667(21)00230-9.

    Article  PubMed  Google Scholar 

  4. Sies, H. Total Antioxidant Capacity: Appraisal of a Concept. The Journal of nutrition. 2007;137(6): 1493–1495. DOI: https://doi.org/10.1093/jn/137.6.1493.

    Article  CAS  PubMed  Google Scholar 

  5. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health. 2014;14:643. DOI: https://doi.org/10.1186/1471-2458-14-643.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sheng LT, Jiang YW, Feng L, Pan A, Koh WP. Dietary Total Antioxidant Capacity and Late-Life Cognitive Impairment: The Singapore Chinese Health Study. The journals of gerontology. Series A, Biological sciences and medical sciences. 2022;77(3):561–9. DOI: https://doi.org/10.1093/gerona/glab100.

    Article  PubMed  Google Scholar 

  7. Crichton GE, Bryan J, Murphy KJ. Dietary antioxidants, cognitive function and dementia— a systematic review. Plant foods for human nutrition (Dordrecht, Netherlands). 2013;68(3):279–92. DOI: https://doi.org/10.1007/s11130-013-0370-0.

    Article  CAS  PubMed  Google Scholar 

  8. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, et al. Dietary Intake of Antioxidant Nutrients and the Risk of Incident Alzheimer Disease in a Biracial Community Study. JAMA. 2002;287(24):3230–3237. DOI: https://doi.org/10.1001/jama.287.24.3230.

    Article  CAS  PubMed  Google Scholar 

  9. Luchsinger JA, Tang M, Shea S, Mayeux R. Antioxidant Vitamin Intake and Risk of Alzheimer Disease. Archives of neurology. 2003;60(2):203–208. DOI: https://doi.org/10.1001/archneur.60.2.203

    Article  PubMed  Google Scholar 

  10. Beydoun MA, Beydoun HA, Fanelli-Kuczmarski MT, Weiss J, Hossain S, Canas JA, et al. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults. Neurology. 2022;98(21):e2150–62. DOI: https://doi.org/10.1212/WNL.0000000000200289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Karvetti RL, Knuts LR. Validity of the 24-hour dietary recall. Journal of the American Dietetic Association. 1985;85 (11):1437–42.

    Article  CAS  PubMed  Google Scholar 

  12. Floegel A, Kim DO, Chung SJ, Song WO, Fernandez ML, Bruno RS, et al. Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. International journal of food sciences and nutrition. 2010;61(6): 600–623. DOI: https://doi.org/10.3109/09637481003670816.

    Article  CAS  PubMed  Google Scholar 

  13. Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimer’s & dementia. 2008;4(2):96–109. DOI: https://doi.org/10.1016/j.jalz.2007.08.005.

    Article  Google Scholar 

  14. Gao S, Jin Y, Unverzagt FW, Liang C, Hall KS, Ma F, et al. Hypertension and cognitive decline in rural elderly Chinese. Journal of the American Geriatrics Society. 2009;57(6):1051–7. DOI: https://doi.org/10.1111/j.1532-5415.2009.02267.x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Balzano J, Chiaravalloti N, Lengenfelder J, Moore N, DeLuca J. Does the scoring of late responses affect the outcome of the paced auditory serial addition task (PASAT)? Archives of clinical neuropsychology: the official journal of the National Academy of Neuropsychologists. 2006;21(8):819–825. DOI: https://doi.org/10.1016/j.acn.2006.09.002.

    Article  PubMed  Google Scholar 

  16. Tulsky DS, Saklofske DH, Wilkins C, Weiss LG. Development of a general ability index for the Wechsler Adult Intelligence Scale—Third Edition. Psychological assessment. 2001;13(4):566–71. DOI: https://doi.org/10.1037//1040-3590.13.4.566.

    Article  CAS  PubMed  Google Scholar 

  17. Rosano C, Newman AB, Katz R, Hirsch CH, Kuller LH. Association between lower digit symbol substitution test score and slower gait and greater risk of mortality and of developing incident disability in well-functioning older adults. Journal of the American Geriatrics Society. 2008;56(9):1618–25. DOI: https://doi.org/10.1111/j.1532-5415.2008.01856.x.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Weng X, Tan Y, Fei Q, Yao H, Fu Y, Wu X, et al. Association between mixed exposure of phthalates and cognitive function among the U.S. elderly from NHANES 2011–2014: Three statistical models. The Science of the total environment. 2022;828(9):154362. DOI: https://doi.org/10.1016/j.scitotenv.2022.154362.

    Article  CAS  PubMed  Google Scholar 

  19. Kim G, Choi S, Lyu J. Body mass index and trajectories of cognitive decline among older Korean adults. Aging & mental health.. 2020;24(9):758–64. DOI: https://doi.org/10.1080/13607863.2018.1550628.

    Article  Google Scholar 

  20. Krieger N, Williams DR, Moss NE. Measuring social class in US public health research: concepts, methodologies, and guidelines. Annual review of public health. 1997;18:341–378. DOI: https://doi.org/10.1146/annurev.publhealth.18.1.341.

    Article  CAS  PubMed  Google Scholar 

  21. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Archives of neurology. 2002;59(7):1125–32. DOI: https://doi.org/10.1001/archneur.59.7.1125.

    Article  PubMed  Google Scholar 

  22. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA. 2002;287(4):3223–9. DOI: https://doi.org/10.1001/jama.287.24.3223.

    Article  CAS  PubMed  Google Scholar 

  23. Devore EE, Kang JH, Stampfer MJ, Grodstein F. Total antioxidant capacity of diet in relation to cognitive function and decline. The American journal of clinical nutrition. 2010;92(5): 1157–1164. DOI: https://doi.org/10.3945/ajcn.2010.29634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cetin E, Top EC, Sahin G, Ozkaya YG, Aydin H, Toraman F. Effect of vitamin E supplementation with exercise on cognitive functions and total antioxidant capacity in older people. The journal of nutrition, health & aging. 2010;14():763–9. DOI: https://doi.org/10.1007/s12603-010-0256-x.

    Article  CAS  Google Scholar 

  25. Grodstein F, Chen J, Willett WC. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. The American journal of clinical nutrition.2003;77(4): 975–84. DOI: https://doi.org/10.1093/ajcn/77.4.975.

    Article  CAS  PubMed  Google Scholar 

  26. Han F. Cerebral microvascular dysfunction and neurodegeneration in dementia. Stroke and vascular neurology. 2019;4(2):105–7. DOI: https://doi.org/10.1136/svn-2018-000213.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiology of aging. 2021;107:86–95. DOI: https://doi.org/10.1016/j.neurobiolaging.2021.07.014.

    Article  CAS  PubMed  Google Scholar 

  28. Guemouri L, Artur Y, Herbeth B, Jeandel C, Cuny G, Siest G. Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clinical chemistry. 1991;37(11):1932–1937.

    Article  CAS  PubMed  Google Scholar 

  29. Serafini M, Ghiselli A, Ferro-Luzzi A. Red wine, tea, and antioxidants. Lancet. 1994;344(8922):626.

    Article  CAS  PubMed  Google Scholar 

  30. Halvorsen BL, Holte K, Myhrstad MC, Barikmo I, Hvattum E, Remberg SF, et al. A systematic screening of total antioxidants in dietary plants. The Journal of nutrition. 2002;132(3):461–471. DOI:https://doi.org/10.1093/jn/132.3.461.

    Article  CAS  PubMed  Google Scholar 

  31. Halvorsen BL, Carlsen MH, Phillips KM, Bøhn SK, Holte K, Jacobs DRJr, et al. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. The American journal of clinical nutrition. 2006;84(1):95–135. DOI:https://doi.org/10.1093/ajcn/84.1.95.

    Article  CAS  PubMed  Google Scholar 

  32. Carlsen MH, Halvorsen BL, Holte K, Bøhn SK, Dragland S, Sampson L, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition journal. 2010;9:3. DOI: https://doi.org/10.1186/1475-2891-9-3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Halvorsen BL, Blomhoff R. Validation of a quantitative assay for the total content of lipophilic and hydrophilic antioxidants in foods. Food chemistry. 2011;127(2):761–768. DOI:https://doi.org/10.1016/j.foodchem.2010.12.142.

    Article  CAS  PubMed  Google Scholar 

  34. Yang C, Jia X, Wang Y, Fan J, Zhao C, Yang Y, et al. Association between Dietary Total Antioxidant Capacity of Antioxidant Vitamins and the Risk of Stroke among US Adults. Antioxidants (Basel). 2022;11(11):2252. DOI:https://doi.org/10.3390/antiox11112252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to participants and members of the NHANES.

Funding

Funding: This work was supported by grants from following funding: The National Natural Science Foundation of China (82271304, 81801150, 81971121, 82171316 and 81671167); The Science and Technology Planning Project of Guangdong Province, China (2017A020215049, 2019A050513005); Natural Science Foundation of Guangdong Province (2018A0303130182, 2020A1515010279 and 2022A1515012311); The Fundamental Research Funds for the Central Universities (21621102) Science and Technology Projects in Guangzhou, China (2014Y2-00505, 202002020003, 202201010127) Science and Technology Program of Guangzhou: Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases; 202201020042); Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (JNU1AF-CFTP-2022-a01203); Young Talent Support Project of Guangzhou Association for Science and Technology (QT-2023-024); This work was supported by grants from Science and Technology Program of Guangzhou—Key Lab of Guangzhou Basic and Translational Research of Pan-vascular Diseases (202201020042), the National Natural Science Foundation of China (81971121, 82171316, 81801150, 82271304, and 81671167), the Science and Technology Planning Project of Guangdong Province (2017A020215049, 2019A050513005), Natural Science Foundation of Guangdong Province (2018A0303130182 and 2020A1515010279), the Basic and Applied Basic Research Fund Project of Guangdong Province (2022A1515012311), the Fundamental Research Funds for the Central Universities (21621102), Science and Technology Program of Guangzhou, China (2014Y2-00505, 201508020004), the Science and Technology Planning Project of Guangzhou (202002020003, 202201010127).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Lu or Anding Xu.

Ethics declarations

Conflicts of Interest: The authors declare no conflict of interest.

Ethics declarations: The study protocols of NHANES were approved by the NCHS Research Ethics Review Board and participant written informed consent was obtained (https://www.cdc.gov/nchs/nhanes/irba98.htm). The additional ethical review was no longer required for the present study due to the usage of publicly available data without identifiable personal information.

Additional information

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki. The protocols of NHANES were approved by the NCHS Research Ethics Review Board.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, M., Liu, Y., Jia, X. et al. Dietary Total Antioxidant Capacity and Cognitive Function in Older Adults in the United States: The NHANES 2011–2014. J Nutr Health Aging 27, 479–486 (2023). https://doi.org/10.1007/s12603-023-1934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-023-1934-9

Key words

Navigation