Skip to main content
Log in

Association of Dental Caries with Muscle Mass, Muscle Strength, and Sarcopenia: A Community-Based Study

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Changes in the oral cavity can reflect other changes throughout the body. This study aimed to investigate the association of dental caries with muscle mass, muscle strength, and sarcopenia, and also to describe the microbial diversity, composition, and community structure of severe dental caries and sarcopenia.

Design

Cross-sectional study based on a Chinese population aged from 50 to 85 years.

Setting

Communities from Lanxi City, Zhejiang Province, China.

Participants

A total of 1,442 participants aged from 50 to 85 years from a general community (62.8% women; median age 61.0 [interquartile range: 55.0, 68.0]).

Measurements

Dental caries was assessed by the decayed, missing, and filled teeth (DMFT) index. Sarcopenia was defined as the presence of both low muscle mass (assessed by dual-energy X-ray absorptiometry scanning) and low muscle strength (assessed by handgrip strength). Multivariate logistic regression models were used to analyze the association of dental caries with muscle mass, muscle strength, and sarcopenia. Fecal samples underwent 16S rRNA profiling to evaluate the diversity and composition of the gut microbiota in patients with severe dental caries and/or sarcopenia.

Results

In the fully adjusted logistic models, dental caries was positively associated with low muscle strength (DMFT ≥ 7: OR, 1.61; 95% CI, 1.25–2.06), and sarcopenia (DMFT ≥ 7: OR, 1.51; 95% CI, 1.01–2.26), but not low muscle mass. Severe dental caries was positively associated with higher alpha-diversity indices (richness, chao1, and ACE, all p < 0.05) and associated with beta-diversity based on Bray-Curtis distance (p = 0.006). The severe dental caries group and the sarcopenia group overlapped with 11 depleted and 13 enriched genera.

Conclusion

Dental caries was positively associated with low muscle strength and sarcopenia but not muscle mass, and this association was more pronounced in male individuals. Significant differences were observed in gut microbiota composition both in severe dental caries and sarcopenia, and there was an overlap of the genera features. Future longitudinal studies are needed to clarify causal relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393(10191):2636–2646. doi: https://doi.org/10.1016/S0140-6736(19)31138-9.

    Article  Google Scholar 

  2. Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300–307. doi: https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  Google Scholar 

  3. Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell. 2018;9(5):488–500. doi: https://doi.org/10.1007/s13238-018-0548-1.

    Article  CAS  Google Scholar 

  4. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: https://doi.org/10.1093/ageing/afy169.

    Article  Google Scholar 

  5. Raphael C. Oral Health and Aging. Am J Public Health. 2017;107(S1):S44–S45. doi: https://doi.org/10.2105/AJPH.2017.303835.

    Article  Google Scholar 

  6. Peres MA, Macpherson L, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreno CC, Kearns C, et al. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249–260. doi: https://doi.org/10.1016/S0140-6736(19)31146-8.

    Article  Google Scholar 

  7. Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369(9555):51–59. doi: https://doi.org/10.1016/S0140-6736(07)60031-2.

    Article  CAS  Google Scholar 

  8. Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis — a comprehensive review. J Clin Periodontol. 2017;44 Suppl 18:S94–S105. doi: https://doi.org/10.1111/jcpe.12677.

    Article  Google Scholar 

  9. Eremenko M, Pink C, Biffar R, Schmidt CO, Ittermann T, Kocher T, Meisel P. Cross-sectional association between physical strength, obesity, periodontitis and number of teeth in a general population. J Clin Periodontol. 2016;43(5):401–407. doi: https://doi.org/10.1111/jcpe.12531.

    Article  CAS  Google Scholar 

  10. Shin HS. Handgrip strength and the number of teeth among Korean population. J Periodontol. 2019;90(1):90–97. doi: https://doi.org/10.1002/JPER.18-0242.

    Article  Google Scholar 

  11. Yun J, Lee Y. Association between oral health status and handgrip strength in older Korean adults. Eur Geriatr Med. 2020;11(3):459–464. doi: https://doi.org/10.1007/s41999-020-00318-x.

    Article  Google Scholar 

  12. Murakami M, Hirano H, Watanabe Y, Sakai K, Kim H, Katakura A. Relationship between chewing ability and sarcopenia in Japanese community-dwelling older adults. Geriatr Gerontol Int. 2015;15(8):1007–1012. doi: https://doi.org/10.1111/ggi.12399.

    Article  Google Scholar 

  13. Inui A, Takahashi I, Sawada K, Naoki A, Oyama T, Tamura Y, Osanai T, Satake A, Nakaji S, Kobayashi W. Teeth and physical fitness in a community-dwelling 40 to 79-year-old Japanese population. Clin Interv Aging. 2016;11:873–878. doi: https://doi.org/10.2147/CIA.S108498.

    Article  Google Scholar 

  14. Zhou Z, Gu Y, Zhang Q, Liu L, Wu H, Meng G, Bao X, Zhang S, Sun S, Wang X, et al. Association between tooth loss and handgrip strength in a general adult population. Plos One. 2020;15(7):e236010. doi: https://doi.org/10.1371/journal.pone.0236010.

    Article  Google Scholar 

  15. Daboul A, Schwahn C, Bulow R, Kiliaridis S, Kocher T, Klinke T, Mundt T, Mourad S, Volzke H, Habes M, et al. Influence of Age and Tooth Loss on Masticatory Muscles Characteristics: A Population Based MR Imaging Study. J Nutr Health Aging. 2018;22(7):829–836. doi: https://doi.org/10.1007/s12603-018-1029-1.

    Article  CAS  Google Scholar 

  16. Yamaguchi K, Tohara H, Hara K, Nakane A, Yoshimi K, Nakagawa K, Minakuchi S. Factors associated with masseter muscle quality assessed from ultrasonography in community-dwelling elderly individuals: A cross-sectional study. Arch Gerontol Geriatr. 2019;82:128–132. doi: https://doi.org/10.1016/j.archger.2019.02.003.

    Article  CAS  Google Scholar 

  17. Hamalainen P, Rantanen T, Keskinen M, Meurman JH. Oral health status and change in handgrip strength over a 5-year period in 80-year-old people. Gerodontology. 2004;21(3):155–160. doi: https://doi.org/10.1111/j.1741-2358.2004.00022.x.

    Article  Google Scholar 

  18. Paksoy T, Ustaoglu G, Peker K. Association of socio-demographic, behavioral, and comorbidity-related factors with severity of periodontitis in Turkish patients. Aging Male. 2020;23(3):232–241. doi: https://doi.org/10.1080/13685538.2020.1748002.

    Article  Google Scholar 

  19. Leite MA, de Mattia TM, Kakihata C, Bortolini BM, de Carli RP, Bertolini G, Brancalhao R, Ribeiro L, Nassar CA, Nassar PO. Experimental Periodontitis in the Potentialization of the Effects of Immobilism in the Skeletal Striated Muscle. Inflammation. 2017;40(6):2000–2011. doi: https://doi.org/10.1007/s10753-017-0640-3.

    Article  Google Scholar 

  20. Delzenne NM, Cani PD. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr. 2011;31:15–31. doi: https://doi.org/10.1146/annurevnutr-072610-145146.

    Article  CAS  Google Scholar 

  21. Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19(2):77–94. doi: https://doi.org/10.1038/s41579-020-0438-4.

    Article  CAS  Google Scholar 

  22. Picca A, Fanelli F, Calvani R, Mule G, Pesce V, Sisto A, Pantanelli C, Bernabei R, Landi F, Marzetti E. Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators Inflamm. 2018;2018:7026198. doi: https://doi.org/10.1155/2018/7026198.

    Article  Google Scholar 

  23. Ticinesi A, Nouvenne A, Cerundolo N, Catania P, Prati B, Tana C, Meschi T. Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients. 2019;11(7). doi: https://doi.org/10.3390/nu11071633.

  24. Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, Yang T, Ma L, Fu Z. Lactobacillus and Bifidobacterium Improves Physiological Function and Cognitive Ability in Aged Mice by the Regulation of Gut Microbiota. Mol Nutr Food Res. 2019;63(22):e1900603. doi: https://doi.org/10.1002/mnfr.201900603.

    Article  Google Scholar 

  25. Buigues C, Fernandez-Garrido J, Pruimboom L, Hoogland AJ, Navarro-Martinez R, Martinez-Martinez M, Verdejo Y, Mascaros MC, Peris C, Cauli O. Effect of a Prebiotic Formulation on Frailty Syndrome: A Randomized, Double-Blind Clinical Trial. Int J Mol Sci. 2016;17(6). doi: https://doi.org/10.3390/ijms17060932.

  26. Xu AA, Hoffman K, Gurwara S, White DL, Kanwal F, El-Serag HB, Petrosino JF, Jiao L. Oral Health and the Altered Colonic Mucosa-Associated Gut Microbiota. Dig Dis Sci. 2021;66(9):2981–2991. doi: https://doi.org/10.1007/s10620-020-06612-9.

    Article  CAS  Google Scholar 

  27. Li B, Ge Y, Cheng L, Zeng B, Yu J, Peng X, Zhao J, Li W, Ren B, Li M, et al. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int J Oral Sci. 2019;11(1):10. doi: https://doi.org/10.1038/s41368-018-0043-9.

    Article  Google Scholar 

  28. Wei C, Ye S, Ru Y, Gan D, Zheng W, Huang C, Chen L, Gao P, Li J, Yang M, et al. Cohort profile: the Lanxi Cohort study on obesity and obesity-related non-communicable diseases in China. Bmj Open. 2019;9(5):e25257. doi: https://doi.org/10.1136/bmjopen-2018-025257.

    Article  Google Scholar 

  29. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. doi: https://doi.org/10.1016/j.jamda.2013.11.025.

    Article  Google Scholar 

  30. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2–3):275–294. doi: https://doi.org/10.1016/0022-510x(88)90132-3.

    Article  CAS  Google Scholar 

  31. Miao Z, Lin JS, Mao Y, Chen GD, Zeng FF, Dong HL, Jiang Z, Wang J, Xiao C, Shuai M, et al. Erythrocyte n-6 Polyunsaturated Fatty Acids, Gut Microbiota, and Incident Type 2 Diabetes: A Prospective Cohort Study. Diabetes Care. 2020;43(10):2435–2443. doi: https://doi.org/10.2337/dc20-0631.

    Article  CAS  Google Scholar 

  32. Yeung CA: Book review: Oral health surveys: Basic methods, 5th edition. ‘Edited. London, Nature Publishing Group;2014. pp. 333.

    Google Scholar 

  33. Wright DR, Glanz K, Colburn T, Robson SM, Saelens BE. The accuracy of parent-reported height and weight for 6–12 year old U.S. children. Bmc Pediatr. 2018;18(1):52. doi: https://doi.org/10.1186/s12887-018-1042-x.

    Article  Google Scholar 

  34. Cleland C, Ferguson S, Ellis G, Hunter RF. Validity of the International Physical Activity Questionnaire (IPAQ) for assessing moderate-to-vigorous physical activity and sedentary behaviour of older adults in the United Kingdom. Bmc Med Res Methodol. 2018;18(1):176. doi: https://doi.org/10.1186/s12874-018-0642-3.

    Article  Google Scholar 

  35. Hsing JC, Nguyen MH, Yang B, Min Y, Han SS, Pung E, Winter SJ, Zhao X, Gan D, Hsing AW, et al. Associations Between Body Fat, Muscle Mass, and Nonalcoholic Fatty Liver Disease: A Population-Based Study. Hepatol Commun. 2019;3(8):1061–1072. doi: https://doi.org/10.1002/hep4.1392.

    Article  CAS  Google Scholar 

  36. Gan D, Wang L, Jia M, Ru Y, Ma Y, Zheng W, Zhao X, Yang F, Wang T, Mu Y, et al. Low muscle mass and low muscle strength associate with nonalcoholic fatty liver disease. Clin Nutr. 2020;39(4):1124–1130. doi: https://doi.org/10.1016/j.clnu.2019.04.023.

    Article  Google Scholar 

  37. Alberti G ZPSJ. 2020-07-29. Internet: https://www.idf.org/component/attachments/attachments.html?id=705&task=download (accessed 17 Nov 2021).

  38. Myers GL, Christenson RH, Cushman M, Ballantyne CM, Cooper GR, Pfeiffer CM, Grundy SM, Labarthe DR, Levy D, Rifai N, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice guidelines: emerging biomarkers for primary prevention of cardiovascular disease. Clin Chem. 2009;55(2):378–384. doi: https://doi.org/10.1373/clinchem.2008.115899.

    Article  CAS  Google Scholar 

  39. Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell. 2021;12(5):315–330. doi: https://doi.org/10.1007/s13238-020-00724-8.

    Article  Google Scholar 

  40. Sabharwal A, Stellrecht E, Scannapieco FA. Associations between dental caries and systemic diseases: a scoping review. Bmc Oral Health. 2021;21(1):472. doi: https://doi.org/10.1186/s12903-021-01803-w.

    Article  CAS  Google Scholar 

  41. McLean RR, Mangano KM, Hannan MT, Kiel DP, Sahni S. Dietary Protein Intake Is Protective Against Loss of Grip Strength Among Older Adults in the Framingham Offspring Cohort. J Gerontol A Biol Sci Med Sci. 2016;71(3):356–361. doi: https://doi.org/10.1093/gerona/glv184.

    Article  CAS  Google Scholar 

  42. Bano G, Trevisan C, Carraro S, Solmi M, Luchini C, Stubbs B, Manzato E, Sergi G, Veronese N. Inflammation and sarcopenia: A systematic review and meta-analysis. Maturitas. 2017;96:10–15. doi: https://doi.org/10.1016/j.maturitas.2016.11.006.

    Article  Google Scholar 

  43. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–243. doi: https://doi.org/10.1097/00004836-200603000-00015.

    Article  CAS  Google Scholar 

  44. St LR, O’Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience. 2013;246:382–390. doi: https://doi.org/10.1016/j.neuroscience.2013.04.037.

    Article  Google Scholar 

  45. Agnello M, Marques J, Cen L, Mittermuller B, Huang A, Chaichanasakul TN, Shi W, He X, Schroth RJ. Microbiome Associated with Severe Caries in Canadian First Nations Children. J Dent Res. 2017;96(12):1378–1385. doi: https://doi.org/10.1177/0022034517718819.

    Article  CAS  Google Scholar 

  46. Xu L, Chen X, Wang Y, Jiang W, Wang S, Ling Z, Chen H. Dynamic Alterations in Salivary Microbiota Related to Dental Caries and Age in Preschool Children With Deciduous Dentition: A 2-Year Follow-Up Study. Front Physiol. 2018;9:342. doi: https://doi.org/10.3389/fphys.2018.00342.

    Article  Google Scholar 

  47. Lira-Junior R, Akerman S, Klinge B, Bostrom EA, Gustafsson A. Salivary microbial profiles in relation to age, periodontal, and systemic diseases. Plos One. 2018;13(3):e189374. doi: https://doi.org/10.1371/journal.pone.0189374.

    Article  Google Scholar 

  48. Watanabe K, Katagiri S, Takahashi H, Sasaki N, Maekawa S, Komazaki R, Hatasa M, Kitajima Y, Maruyama Y, Shiba T, et al. Porphyromonas gingivalis impairs glucose uptake in skeletal muscle associated with altering gut microbiota. Faseb J. 2021;35(2):e21171. doi: https://doi.org/10.1096/fj.202001158R.

    Article  CAS  Google Scholar 

  49. Margiotta E, Caldiroli L, Callegari ML, Miragoli F, Zanoni F, Armelloni S, Rizzo V, Messa P, Vettoretti S. Association of Sarcopenia and Gut Microbiota Composition in Older Patients with Advanced Chronic Kidney Disease, Investigation of the Interactions with Uremic Toxins, Inflammation and Oxidative Stress. Toxins (Basel). 2021;13(7). doi: https://doi.org/10.3390/toxins13070472.

  50. Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, Collamati A, D’Angelo E, Pahor M, Bernabei R, et al. Sarcopenia: an overview. Aging Clin Exp Res. 2017;29(1):11–17. doi: https://doi.org/10.1007/s40520-016-0704-5.

    Article  Google Scholar 

  51. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829–834. doi: https://doi.org/10.1093/gerona/63.8.829.

    Article  Google Scholar 

  52. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–1064. doi: https://doi.org/10.1093/gerona/61.10.1059.

    Article  Google Scholar 

  53. Liu FT, Lin HS. Effect of the contraceptive steroids norethynodrel and mestranol on dental caries activity in young adult female rats. J Dent Res. 1973;52(4):753–757. doi: https://doi.org/10.1177/00220345730520041901.

    Article  CAS  Google Scholar 

  54. Lukacs JR, Largaespada LL. Explaining sex differences in dental caries prevalence: saliva, hormones, and “life-history” etiologies. Am J Hum Biol. 2006;18(4):540–555. doi: https://doi.org/10.1002/ajhb.20530.

    Article  Google Scholar 

  55. DELMAN LA. Effect of gonadectomy on dental caries: review of the literature. J Am Dent Assoc. 1955;51(2):155–158. doi: https://doi.org/10.14219/jada.archive.1955.0175.

    Article  CAS  Google Scholar 

  56. Serra C, Tangherlini F, Rudy S, Lee D, Toraldo G, Sandor NL, Zhang A, Jasuja R, Bhasin S. Testosterone improves the regeneration of old and young mouse skeletal muscle. J Gerontol A Biol Sci Med Sci. 2013;68(1):17–26. doi: https://doi.org/10.1093/gerona/gls083.

    Article  CAS  Google Scholar 

  57. Dubois V, Laurent M, Boonen S, Vanderschueren D, Claessens F. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions. Cell Mol Life Sci. 2012;69(10):1651–1667. doi: https://doi.org/10.1007/s00018-011-0883-3.

    Article  CAS  Google Scholar 

  58. Kitajima Y, Ono Y. Estrogens maintain skeletal muscle and satellite cell functions. J Endocrinol. 2016;229(3):267–275. doi: https://doi.org/10.1530/JOE-15-0476.

    Article  CAS  Google Scholar 

  59. Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol. 2019;191:105375. doi: https://doi.org/10.1016/j.jsbmb.2019.105375.

    Article  CAS  Google Scholar 

  60. Hansen M. Female hormones: do they influence muscle and tendon protein metabolism? Proc Nutr Soc. 2018;77(1):32–41. doi: https://doi.org/10.1017/S0029665117001951.

    Article  CAS  Google Scholar 

Download references

Funding

Funding statement: This work was supported by the Cyrus Tang Foundation (419600-11102), Zhejiang University Education Foundation (100000-11320), Hsun K. Chou Fund of Zhejiang University Education Foundation (419600-11107), and the Key R&D Program of Zhejiang (2022C03060).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: SKZ and YY designed the study and wrote the manuscript. YY, SLD, CCW, YFW, YWS, JHL, and NLW collected and analyzed the data. YY, YF, CCW, YFW, JHL, and LKS were involved in data interpretation, drafting the manuscript, and revising it critically. HMW and SKZ supervised the study. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Huiming Wang or Shankuan Zhu.

Ethics declarations

Conflict of interest: The authors declare that they have no conflicts of interest.

Ethical standards: This study was approved by the Ethics Committee of the School of Public Health Zhejiang University (NO: ZGL201905-1) and was conducted in accordance with the Helsinki Declaration of 1975, as revised in 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Deng, S., Wang, C. et al. Association of Dental Caries with Muscle Mass, Muscle Strength, and Sarcopenia: A Community-Based Study. J Nutr Health Aging 27, 10–20 (2023). https://doi.org/10.1007/s12603-022-1875-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-022-1875-8

Key words

Navigation