Skip to main content
Log in

High Estimated 24-Hour Urinary Sodium Excretion Is Related to Symptomatic Knee Osteoarthritis: A Nationwide Cross-Sectional Population-Based Study

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

High salt intake results in various harmful effects on human health including hypertension, cardiovascular disease, and reduced bone density. Despite this, there are very few studies in the literature that have investigated the association between sodium intake and osteoarthritis (OA). Therefore, we aimed to explore these associations in a Korean population.

Methods

This study used cross-sectional data from adult subjects aged 50–75 years from two consecutive periods of the Korean National Health and Nutrition Examination Survey V–VII (2010–2011 and 2014–2016). The estimated 24-hour urinary sodium excretion (24HUNa) was used as a surrogate marker of salt intake. In the 2010–2011 dataset, knee OA (KOA) was defined as the presence of the radiographic features of OA and knee pain. The association between KOA and salt intake was analysed using univariable and multivariable logistic regression methods. For the sensitivity analysis, the same procedures were conducted on subjects with self-reported OA (SR-OA) with knee pain in the 2010–2011 dataset and any site SR-OA in the 2014–2016 dataset.

Results

Subjects with KOA had significantly lower energy intake, but higher 24HUNa than those without KOA. The restricted cubic spline plots demonstrated a J-shaped distribution between 24HUNa and prevalent KOA. When 24HUNa was stratified into five groups (<2, 2–3, 3–4, 4–5 and ≥5 g/day), subjects with high sodium intake (≥5 g/day) had a higher risk of KOA (odds ratio [OR] = 1.64, 95% confidence interval [CI] 1.03–2.62) compared to the reference group (3–4 g/day) after adjusting for covariates. The sensitivity analysis based on SR-OA with knee pain showed that high sodium intake was also significantly associated with increased prevalence of OA (OR = 1.84, 95% CI 1.10–3.10) compared with the reference group. Regarding SR-OA at any site in the 2014–2016 dataset, estimated 24HUNa showed a significantly positive association with the presence of SR-OA after adjusting for potential confounders.

Conclusions

This nationwide Korean representative study showed a significant association between symptomatic KOA and high sodium intake (≥5 g/day). Avoidance of a diet high in salt might be beneficial as a non-pharmacologic therapy for OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl AJ, Pelletier JP. Osteoarthritis. Nat Rev Dis Primers 2016;2:16072. doi:https://doi.org/10.1038/nrdp.2016.72

    Article  PubMed  Google Scholar 

  2. Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 2015;11(1):35–44. doi:https://doi.org/10.1038/nrrheum.2014.162

    Article  CAS  PubMed  Google Scholar 

  3. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet 2019;393(10182):1745–1759. doi:https://doi.org/10.1016/s0140-6736(19)30417-9

    Article  CAS  PubMed  Google Scholar 

  4. Safiri S, Kolahi AA, Smith E, Hill C, Bettampadi D, Mansournia MA, Hoy D, Ashrafi-Asgarabad A, Sepidarkish M, Almasi-Hashiani A, Collins G, Kaufman J, Qorbani M, Moradi-Lakeh M, Woolf AD, Guillemin F, March L, Cross M. Global, regional and national burden of osteoarthritis 1990–2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 2020;79(6):819–828. doi:https://doi.org/10.1136/annrheumdis-2019-216515

    Article  PubMed  Google Scholar 

  5. Thomas S, Browne H, Mobasheri A, Rayman MP. What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology (Oxford) 2018;57(suppl_4):iv61–iv74. doi:https://doi.org/10.1093/rheumatology/key011

    Article  CAS  Google Scholar 

  6. Lu B, Driban JB, Xu C, Lapane KL, McAlindon TE, Eaton CB. Dietary Fat Intake and Radiographic Progression of Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2017;69(3):368–375. doi:https://doi.org/10.1002/acr.22952

    Article  CAS  Google Scholar 

  7. Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts. Ann Rheum Dis 2017;76(8):1411–1419. doi:https://doi.org/10.1136/annrheumdis-2016-210810

    Article  CAS  PubMed  Google Scholar 

  8. Joseph GB, McCulloch CE, Nevitt MC, Neumann J, Lynch JA, Lane NE, Link TM. Associations Between Vitamins C and D Intake and Cartilage Composition and Knee Joint Morphology Over 4 Years: Data From the Osteoarthritis Initiative. Arthritis Care Res (Hoboken) 2020;72(9):1239–1247. doi:https://doi.org/10.1002/acr.24021

    Article  CAS  Google Scholar 

  9. Misra D, Booth SL, Tolstykh I, Felson DT, Nevitt MC, Lewis CE, Torner J, Neogi T. Vitamin K deficiency is associated with incident knee osteoarthritis. Am J Med 2013;126(3):243–248. doi:https://doi.org/10.1016/j.amjmed.2012.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arora V, Singh G, I OS, Ma K, Natarajan Anbazhagan A, Votta-Velis EG, Bruce B, Richard R, van Wijnen AJ, Im HJ. Gut-microbiota modulation: The impact of thegut-microbiotaon osteoarthritis. Gene 2021;785:145619. doi:https://doi.org/10.1016/j.gene.2021.145619

    Article  CAS  PubMed  Google Scholar 

  11. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S, Engell RE, Lim S, Danaei G, Ezzati M, Powles J. Global sodium consumption and death from cardiovascular causes. N Engl J Med 2014;371(7):624–634. doi:https://doi.org/10.1056/NEJMoa1304127

    Article  PubMed  Google Scholar 

  12. World Health Organization. Guideline: sodium intake for adults and children [Internet]. WHO; 2012. [cited 23 June, 2021]. Available from: https://www.who.int/publications/i/item/9789241504836.

  13. Dahan S, Segal Y, Shoenfeld Y. Dietary factors in rheumatic autoimmune diseases: a recipe for therapy? Nat Rev Rheumatol 2017;13(6):348–358. doi:https://doi.org/10.1038/nrrheum.2017.42

    Article  CAS  PubMed  Google Scholar 

  14. Liu M, Deng M, Luo Q, Dou X, Jia Z. High-Salt Loading Downregulates Nrf2 Expression in a Sodium-Dependent Manner in Renal Collecting Duct Cells. Front Physiol 2019;10:1565. doi:https://doi.org/10.3389/fphys.2019.01565

    Article  PubMed  Google Scholar 

  15. Kweon S, Kim Y, Jang MJ, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43(1):69–77. doi:https://doi.org/10.1093/ije/dyt228

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16(4):494–502. doi:https://doi.org/10.1136/ard.16.4.494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pereira D, Peleteiro B, Araújo J, Branco J, Santos RA, Ramos E. The effect of osteoarthritis definition on prevalence and incidence estimates: a systematic review. Osteoarthritis Cartilage 2011;19(11):1270–1285. doi:https://doi.org/10.1016/j.joca.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  18. IPAQ Research Committee. International Physical Activity Questionnaire (IPAQ) [Internet]. 2005. [cited 23 June, 2021]. Available from: https://sites.google.com/site/theipaq/.

  19. McLean R, Cameron C, Butcher E, Cook NR, Woodward M, Campbell NRC. Comparison of 24-hour urine and 24-hour diet recall for estimating dietary sodium intake in populations: A systematic review and meta-analysis. J Clin Hypertens (Greenwich) 2019;21(12):1753–1762. doi:https://doi.org/10.1111/jch.13729

    Article  Google Scholar 

  20. Cobb LK, Anderson CA, Elliott P, Hu FB, Liu K, Neaton JD, Whelton PK, Woodward M, Appel LJ, American Heart Association Council on L, Metabolic H. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation 2014;129(10):1173–1186. doi:https://doi.org/10.1161/CIR.0000000000000015

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka T, Okamura T, Miura K, Kadowaki T, Ueshima H, Nakagawa H, Hashimoto T. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens 2002;16(2):97–103. doi:https://doi.org/10.1038/sj.jhh.1001307

    Article  CAS  PubMed  Google Scholar 

  22. Koo HS, Kim YC, Ahn SY, Oh SW, Kim S, Chin HJ, Park JH. Estimating 24-hour urine sodium level with spot urine sodium and creatinine. J Korean Med Sci 2014;29 Suppl 2(Suppl 2):S97–s102. doi:https://doi.org/10.3346/jkms.2014.29.S2.S97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toft U, Cerqueira C, Andreasen AH, Thuesen BH, Laurberg P, Ovesen L, Perrild H, Jørgensen T. Estimating salt intake in a Caucasian population: can spot urine substitute 24-hour urine samples? Eur J Prev Cardiol 2014;21(10):1300–1307. doi:https://doi.org/10.1177/2047487313485517

    Article  PubMed  Google Scholar 

  24. Brown IJ, Dyer AR, Chan Q, Cogswell ME, Ueshima H, Stamler J, Elliott P. Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study. Am J Epidemiol 2013;177(11):1180–1192. doi:https://doi.org/10.1093/aje/kwt066

    Article  PubMed  PubMed Central  Google Scholar 

  25. O’Donnell M, Mente A, Rangarajan S, McQueen MJ, O’Leary N, Yin L, Liu X, Swaminathan S, Khatib R, Rosengren A, Ferguson J, Smyth A, Lopez-Jaramillo P, Diaz R, Avezum A, Lanas F, Ismail N, Yusoff K, Dans A, Iqbal R, Szuba A, Mohammadifard N, Oguz A, Yusufali AH, Alhabib KF, Kruger IM, Yusuf R, Chifamba J, Yeates K, Dagenais G, Wielgosz A, Lear SA, Teo K, Yusuf S. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: prospective cohort study. BMJ 2019;364:l772. doi:https://doi.org/10.1136/bmj.l772

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, Diaz R, Avezum A, Lopez-Jaramillo P, Lanas F, Li W, Lu Y, Yi S, Rensheng L, Iqbal R, Mony P, Yusuf R, Yusoff K, Szuba A, Oguz A, Rosengren A, Bahonar A, Yusufali A, Schutte AE, Chifamba J, Mann JF, Anand SS, Teo K, Yusuf S. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet 2016;388(10043):465–475. doi:https://doi.org/10.1016/s0140-6736(16)30467-6

    Article  CAS  PubMed  Google Scholar 

  27. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 2020;29–30:100587. doi:https://doi.org/10.1016/j.eclinm.2020.100587

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 2013;346:f1326. doi:https://doi.org/10.1136/bmj.f1326

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moosavian SP, Haghighatdoost F, Surkan PJ, Azadbakht L. Salt and obesity: a systematic review and meta-analysis of observational studies. Int J Food Sci Nutr 2017;68(3):265–277. doi:https://doi.org/10.1080/09637486.2016.1239700

    Article  PubMed  Google Scholar 

  30. Fatahi S, Namazi N, Larijani B, Azadbakht L. The Association of Dietary and Urinary Sodium With Bone Mineral Density and Risk of Osteoporosis: A Systematic Review and Meta-Analysis. J Am Coll Nutr 2018;37(6):522–532. doi:https://doi.org/10.1080/07315724.2018.1431161

    Article  PubMed  Google Scholar 

  31. Matsunaga M, Lim E, Davis J, Chen JJ. Dietary Quality Associated with Self-Reported Diabetes, Osteoarthritis, and Rheumatoid Arthritis among Younger and Older US Adults: A Cross-Sectional Study Using NHANES 2011:2016. Nutrients 2021;13(2). doi:https://doi.org/10.3390/nu13020545

  32. Kim I, Kim HA, Seo YI, Song YW, Jeong JY, Kim DH. The prevalence of knee osteoarthritis in elderly community residents in Korea. J Korean Med Sci 2010;25(2):293–298. doi:https://doi.org/10.3346/jkms.2010.25.2.293

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cho NH, Kim S, Kim HA, Seo YI. The prevalence and risk factors of knee and hand osteoarthritis in Korea. J Rheum Dis 2007;14(4):354–362. doi:https://doi.org/10.4078/jkra.2007.14.4.354

    Google Scholar 

  34. Alderman MH, Cohen HW. Dietary sodium intake and cardiovascular mortality: controversy resolved? Am J Hypertens 2012;25(7):727–734. doi:https://doi.org/10.1038/ajh.2012.52

    Article  CAS  PubMed  Google Scholar 

  35. Andrianakos AA, Kontelis LK, Karamitsos DG, Aslanidis SI, Georgountzos AI, Kaziolas GO, Pantelidou KV, Vafiadou EV, Dantis PC. Prevalence of symptomatic knee, hand, and hip osteoarthritis in Greece. The ESORDIG study. J Rheumatol 2006;33(12):2507–2513

    PubMed  Google Scholar 

  36. Fransen M, Bridgett L, March L, Hoy D, Penserga E, Brooks P. The epidemiology of osteoarthritis in Asia. Int J Rheum Dis 2011;14(2):113–121. doi:https://doi.org/10.1111/j.1756-185X.2011.01608.x

    Article  PubMed  Google Scholar 

  37. Szoeke CE, Dennerstein L, Wluka AE, Guthrie JR, Taffe J, Clark MS, Cicuttini FM. Physician diagnosed arthritis, reported arthritis and radiological non-axial osteoarthritis. Osteoarthritis Cartilage 2008;16(7):846–850. doi:https://doi.org/10.1016/j.joca.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  38. Panoutsopoulou K, Zeggini E. Advances in osteoarthritis genetics. J Med Genet 2013;50(11):715–724. doi:https://doi.org/10.1136/jmedgenet-2013-101754

    Article  CAS  PubMed  Google Scholar 

  39. MacGregor AJ, Li Q, Spector TD, Williams FM. The genetic influence on radiographic osteoarthritis is site specific at the hand, hip and knee. Rheumatology (Oxford) 2009;48(3):277–280. doi:https://doi.org/10.1093/rheumatology/ken475

    Article  CAS  Google Scholar 

  40. Tachmazidou I, Hatzikotoulas K, Southam L, Esparza-Gordillo J, Haberland V, Zheng J, Johnson T, Koprulu M, Zengini E, Steinberg J, Wilkinson JM, Bhatnagar S, Hoffman JD, Buchan N, Süveges D, Yerges-Armstrong L, Smith GD, Gaunt TR, Scott RA, McCarthy LC, Zeggini E. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet 2019;51(2):230–236. doi:https://doi.org/10.1038/s41588-018-0327-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moe RH, Grotle M, Kjeken I, Hagen KB, Kvien TK, Uhlig T. Disease impact of hand OA compared with hip, knee and generalized disease in specialist rheumatology health care. Rheumatology (Oxford) 2013;52(1):189–196. doi:https://doi.org/10.1093/rheumatology/kes215

    Article  Google Scholar 

  42. Sayre EC, Li LC, Kopec JA, Esdaile JM, Bar S, Cibere J. The effect of disease site (knee, hip, hand, foot, lower back or neck) on employment reduction due to osteoarthritis. PLoS One 2010;5(5):e10470. doi:https://doi.org/10.1371/journal.pone.0010470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fan A, Oladiran O, Shi XQ, Zhang J. High-salt diet decreases mechanical thresholds in mice that is mediated by a CCR2-dependent mechanism. J Neuroinflammation 2020;17(1):179. doi:https://doi.org/10.1186/s12974-020-01858-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F, Punzi L, Giori NJ, Goodman SB, Chu CR, Sokolove JB, Robinson WH. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis 2017;76(5):914–922. doi:https://doi.org/10.1136/annrheumdis-2016-210426

    Article  CAS  PubMed  Google Scholar 

  45. Wenstedt EF, Verberk SG, Kroon J, Neele AE, Baardman J, Claessen N, Pasaoglu Ö T, Rademaker E, Schrooten EM, Wouda RD, de Winther MP, Aten J, Vogt L, Van den Bossche J. Salt increases monocyte CCR2 expression and inflammatory responses in humans. JCI Insight 2019;4(21). doi:https://doi.org/10.1172/jci.insight.130508

  46. Wang Y, Teichtahl AJ, Abram F, Hussain SM, Pelletier JP, Cicuttini FM, Martel-Pelletier J. Knee pain as a predictor of structural progression over 4 years: data from the Osteoarthritis Initiative, a prospective cohort study. Arthritis Res Ther 2018;20(1):250. doi:https://doi.org/10.1186/s13075-018-1751-4

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amer M, Woodward M, Appel LJ. Effects of dietary sodium and the DASH diet on the occurrence of headaches: results from randomised multicentre DASH-Sodium clinical trial. BMJ Open 2014;4(12):e006671. doi:https://doi.org/10.1136/bmjopen-2014-006671

    Article  PubMed  PubMed Central  Google Scholar 

  48. Malta DC, Oliveira MM, Andrade S, Caiaffa WT, Souza MFM, Bernal RTI. Factors associated with chronic back pain in adults in Brazil. Rev Saude Publica 2017;51(suppl 1):9s. doi:https://doi.org/10.1590/s1518-8787.2017051000052

    PubMed  PubMed Central  Google Scholar 

  49. Millerand M, Berenbaum F, Jacques C. Danger signals and inflammaging in osteoarthritis. Clin Exp Rheumatol 2019;37 Suppl 120(5):48–56

    PubMed  Google Scholar 

  50. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016;12(10):580–592. doi:https://doi.org/10.1038/nrrheum.2016.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin X, Beguerie JR, Zhang W, Blizzard L, Otahal P, Jones G, Ding C. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann Rheum Dis 2015;74(4):703–710. doi:https://doi.org/10.1136/annrheumdis-2013-204494

    Article  CAS  PubMed  Google Scholar 

  52. Yilmaz R, Akoglu H, Altun B, Yildirim T, Arici M, Erdem Y. Dietary salt intake is related to inflammation and albuminuria in primary hypertensive patients. Eur J Clin Nutr 2012;66(11):1214–1218. doi:https://doi.org/10.1038/ejcn.2012.110

    Article  CAS  PubMed  Google Scholar 

  53. Lee M, Sorn SR, Lee Y, Kang I. Salt Induces Adipogenesis/Lipogenesis and Inflammatory Adipocytokines Secretion in Adipocytes. Int J Mol Sci 2019;20(1). doi:https://doi.org/10.3390/ijms20010160

  54. Kidd B. Mechanisms of pain in osteoarthritis. Hss j 2012;8(1):26–28. doi:https://doi.org/10.1007/s11420-011-9263-7

    Article  PubMed  PubMed Central  Google Scholar 

  55. de Rooij M, van der Leeden M, Heymans MW, Holla JF, Häkkinen A, Lems WF, Roorda LD, Veenhof C, Sanchez-Ramirez DC, de Vet HC, Dekker J. Prognosis of Pain and Physical Functioning in Patients With Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken) 2016;68(4):481–492. doi:https://doi.org/10.1002/acr.22693

    Article  Google Scholar 

  56. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 1988;15(12):1833–1840

    CAS  PubMed  Google Scholar 

  57. Veronese N, Trevisan C, De Rui M, Bolzetta F, Maggi S, Zambon S, Musacchio E, Sartori L, Perissinotto E, Crepaldi G, Manzato E, Sergi G. Association of Osteoarthritis With Increased Risk of Cardiovascular Diseases in the Elderly: Findings From the Progetto Veneto Anziano Study Cohort. Arthritis Rheumatol 2016;68(5):1136–1144. doi:https://doi.org/10.1002/art.39564

    CAS  PubMed  Google Scholar 

  58. Wang H, Bai J, He B, Hu X, Liu D. Osteoarthritis and the risk of cardiovascular disease: a meta-analysis of observational studies. Sci Rep 2016;6:39672. doi:https://doi.org/10.1038/srep39672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Veronese N, Stubbs B, Solmi M, Smith TO, Reginster JY, Maggi S. Osteoarthristis Increases the Risk of Cardiovascular Disease: Data from the Osteoarthritis Initiative. J Nutr Health Aging 2018;22(3):371–376. doi:https://doi.org/10.1007/s12603-017-0941-0

    Article  CAS  PubMed  Google Scholar 

  60. Kim HS, Shin JS, Lee J, Lee YJ, Kim MR, Bae YH, Park KB, Lee EJ, Kim JH, Ha IH. Association between Knee Osteoarthritis, Cardiovascular Risk Factors, and the Framingham Risk Score in South Koreans: A Cross-Sectional Study. PLoS One 2016;11(10):e0165325. doi:https://doi.org/10.1371/journal.pone.0165325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Constantino de Campos G, Mundi R, Whittington C, Toutounji MJ, Ngai W, Sheehan B. Osteoarthritis, mobility-related comorbidities and mortality: an overview of meta-analyses. Ther Adv Musculoskelet Dis 2020;12:1759720x20981219. doi:https://doi.org/10.1177/1759720x20981219

    Article  PubMed  PubMed Central  Google Scholar 

  62. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019;393(10184):1958–1972. doi:https://doi.org/10.1016/s0140-6736(19)30041-8

    Article  Google Scholar 

  63. Leifer VP, Katz JN, Losina E. The burden of OA-health services and economics. Osteoarthritis Cartilage 2021; doi:https://doi.org/10.1016/j.joca.2021.05.007. doi:https://doi.org/10.1016/j.joca.2021.05.007

  64. Hashimoto H, Nomura N, Shoda W, Isobe K, Kikuchi H, Yamamoto K, Fujimaru T, Ando F, Mori T, Okado T, Rai T, Uchida S, Sohara E. Metformin increases urinary sodium excretion by reducing phosphorylation of the sodium-chloride cotransporter. Metabolism 2018;85:23–31. doi:https://doi.org/10.1016/j.metabol.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  65. Liu C, Zhao Q, Zhen Y, Zhai J, Liu G, Zheng M, Ma G, Wang L, Tian L, Ji L, Li L, Duan L, Liu K. Effect of Corticosteroid on Renal Water and Sodium Excretion in Symptomatic Heart Failure: Prednisone for Renal Function Improvement Evaluation Study. J Cardiovasc Pharmacol 2015;66(3):316–322. doi:https://doi.org/10.1097/fjc.0000000000000282

    Article  CAS  PubMed  Google Scholar 

  66. Shah S, Pitt B, Brater DC, Feig PU, Shen W, Khwaja FS, Wilcox CS. Sodium and Fluid Excretion With Torsemide in Healthy Subjects is Limited by the Short Duration of Diuretic Action. J Am Heart Assoc 2017;6(10). doi:https://doi.org/10.1161/jaha.117.006135

Download references

Acknowledgement

The authors thank Division of Statistics in Medical Research Collaborating Center at Seoul National University Bundang Hospital for statistical analysis. We would like to thank Editage (https://www.editage.co.kr) for English language editing.

Funding

Funding: This study was supported by the Seoul National University Bundang Hospital Research Fund (grant no. 02-2018-047 to YJH and 21-2021-0013 to YJL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jong Lee.

Ethics declarations

Conflicts of Interest: The authors declare that they have no competing interests.

Ethical approval: This study conformed to the ethical guidelines of the 2008 Declaration of Helsinki and was approved by the Institutional Review Board of Seoul National University Bundang Hospital. All participants provided written informed consent prior to being administered the survey.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, YJ., Ji, E., Lee, J.H. et al. High Estimated 24-Hour Urinary Sodium Excretion Is Related to Symptomatic Knee Osteoarthritis: A Nationwide Cross-Sectional Population-Based Study. J Nutr Health Aging 26, 581–589 (2022). https://doi.org/10.1007/s12603-022-1804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-022-1804-x

Key words

Navigation