Skip to main content
Log in

Associations between Hair Mineral Concentrations and Skeletal Muscle Mass in Korean Adults

  • Original Research
  • Published:
The journal of nutrition, health & aging

Abstract

Objectives

Muscle health plays an important role in maintaining function and independence in the elderly, and some nutrients provide protection against the age-related decline of muscle strength and function. Minerals are important nutrients that may contribute to the prevention and treatment of sarcopenia, but they have not been well-studied. This study investigated whether hair mineral concentrations differ between subjects with low muscle mass (LMM) and subjects with normal muscle mass.

Design

Cross-sectional study.

Setting And Participants

A total of 232 adults ≥ 20 years of age who visited the Health Promotion Center of the University Hospital in Gyeonggi-do, Republic of Korea.

Measurements

The data from 232 subjects were analyzed and divided into LMM and normal groups based on the appendicular skeletal muscle mass index (ASMI) (LMM was defined as ASMI < 7.0 kg/m2 in men and < 5.7 kg/m2 in women). Skeletal muscle mass was estimated using a multi-frequency bioelectrical impedance analysis (BIA) device with a body composition analyzer.

Results

Overall mean age of participants was 50.4±11.6 years (29.7% women). Subjects with LMM showed significantly lower triglyceride levels, greater high-density lipoprotein cholesterol levels, and lower body mass index (BMI), compared with subjects who had normal muscle mass. No significant differences in hair mineral concentrations were observed between subjects with LMM and subjects with normal muscle mass, with the exception of copper. Hair copper concentrations were significantly greater in subjects with LMM than in subjects with normal muscle mass after adjustment for covariates and factors (65.7±14.2 vs 33.1±4.3 µg/g, P = 0.035).

Conclusion

These results suggest that hair mineral status may play a role in the development of LMM. Therefore, further studies with larger numbers of subjects are required to identify the effects of mineral imbalances, their relationships with sarcopenia, and the differences between subjects with LMM and subjects with normal muscle mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet 2019;393(10191):2636–2646. doi: https://doi.org/10.1016/s0140-6736(19)31138-9.

    Article  Google Scholar 

  2. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48(1):16–31. doi: https://doi.org/10.1093/ageing/afy169.

    Article  Google Scholar 

  3. van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J Am Med Dir Assoc 2018;19(1):6–11.e13. doi: https://doi.org/10.1016/j.jamda.2017.05.026.

    Article  Google Scholar 

  4. Cruz-Jentoft AJ, Landi F, Schneider SM, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014;43(6):748–759. doi: https://doi.org/10.1093/ageing/afu115.

    Article  Google Scholar 

  5. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15(2):95–101. doi: https://doi.org/10.1016/j.jamda.2013.11.025.

    Article  Google Scholar 

  6. Nishikawa H, Enomoto H, Yoh K, et al. Serum Zinc Concentration and Sarcopenia: A Close Linkage in Chronic Liver Diseases. J Clin Med 2019;8(3). doi: https://doi.org/10.3390/jcm8030336.

  7. Ganapathy A, Nieves JW. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020;12(6). doi: https://doi.org/10.3390/nu12061755.

  8. Cruz-Jentoft AJ, Landi F. Sarcopenia. Clin Med (Lond) 2014;14(2):183–186. doi: https://doi.org/10.7861/clinmedicine.14-2-183.

    Article  Google Scholar 

  9. Lukaski HC. Magnesium, zinc, and chromium nutriture and physical activity. Am J Clin Nutr 2000;72(2 Suppl):585s–593s. doi: https://doi.org/10.1093/ajcn/72.2.585S.

    Article  CAS  Google Scholar 

  10. Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int 1989;35(1):1–13. doi: https://doi.org/10.1038/ki.1989.1.

    Article  CAS  Google Scholar 

  11. Fatani SH, Saleh SA, Adly HM, Abdulkhaliq AA. Trace Element Alterations in the Hair of Diabetic and Obese Women. Biol Trace Elem Res 2016;174(1):32–39. doi: https://doi.org/10.1007/s12011-016-0691-6.

    Article  CAS  Google Scholar 

  12. Lee YA, Kim SH, Kim HN, Song SW. Are There Differences in Hair Mineral Concentrations Between Metabolically Healthy and Unhealthy Obese Adults? 2020;193(2):311–318. doi: https://doi.org/10.1007/s12011-019-01714-6.

    CAS  Google Scholar 

  13. Choi HI, Ko HJ. The Association between Mineral and Trace Element Concentrations in Hair and the 10-Year Risk of Atherosclerotic Cardiovascular Disease in Healthy Community-Dwelling Elderly Individuals. 2019;11(3). doi: https://doi.org/10.3390/nu11030637.

  14. Choi WS, Kim SH, Chung JH. Relationships of hair mineral concentrations with insulin resistance in metabolic syndrome. Biol Trace Elem Res 2014;158(3):323–329. doi: https://doi.org/10.1007/s12011-014-9946-2.

    Article  CAS  Google Scholar 

  15. Kazi TG, Jalbani N, Kazi N, et al. Estimation of toxic metals in scalp hair samples of chronic kidney patients. Biol Trace Elem Res 2009;127(1):16–27. doi: https://doi.org/10.1007/s12011-008-8222-8.

    Article  CAS  Google Scholar 

  16. Kim YS, Kim KM, Lee DJ, et al. Women with fibromyalgia have lower levels of calcium, magnesium, iron and manganese in hair mineral analysis. J Korean Med Sci 2011;26(10):1253–1257. doi: https://doi.org/10.3346/jkms.2011.26.10.1253.

    Article  CAS  Google Scholar 

  17. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc 2020;21(3):300–307.e302. doi: https://doi.org/10.1016/j.jamda.2019.12.012.

    Article  Google Scholar 

  18. Yoon SK, Kim HN, Song SW. Associations of skeletal muscle mass with atherosclerosis and inflammatory markers in Korean adults. Arch Gerontol Geriatr 2020;90:104163. doi: https://doi.org/10.1016/j.archger.2020.104163.

    Article  CAS  Google Scholar 

  19. Jung CH, Lee MJ, Hwang JY, et al. Association of metabolically healthy obesity with subclinical coronary atherosclerosis in a Korean population. Obesity (Silver Spring) 2014;22(12):2613–2620. doi: https://doi.org/10.1002/oby.20883.

    Google Scholar 

  20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28(7):412–419. doi: https://doi.org/10.1007/bf00280883.

    Article  CAS  Google Scholar 

  21. Levey AS, Coresh J, Greene T, et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 2007;53(4):766–772. doi: https://doi.org/10.1373/clinchem.2006.077180.

    Article  CAS  Google Scholar 

  22. Kim HN, Kim SH, Eun YM, Song SW. Effects of zinc, magnesium, and chromium supplementation on cardiometabolic risk in adults with metabolic syndrome: A doubleblind, placebo-controlled randomised trial. J Trace Elem Med Biol 2018;48:166–171. doi: https://doi.org/10.1016/j.jtemb.2018.03.022.

    Article  CAS  Google Scholar 

  23. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 2001;131(2s-2):568S–579S; discussion 580S. doi: https://doi.org/10.1093/jn/131.2.568S.

    Article  CAS  Google Scholar 

  24. Seo MH, Kim MK, Park SE, et al. The association between daily calcium intake and sarcopenia in older, non-obese Korean adults: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2009. Endocr J 2013;60(5):679–686. doi: https://doi.org/10.1507/endocrj.ej12-0395.

    Article  CAS  Google Scholar 

  25. Jacqmain M, Doucet E, Després JP, Bouchard C, Tremblay A. Calcium intake, body composition, and lipoprotein-lipid concentrations in adults. Am J Clin Nutr 2003;77(6):1448–1452. doi: https://doi.org/10.1093/ajcn/77.6.1448.

    Article  CAS  Google Scholar 

  26. Welch AA, Skinner J. Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. 2017;9(11). doi: https://doi.org/10.3390/nu9111189.

  27. Perna S, Peroni G, Faliva MA, et al. Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin Exp Res 2017;29(6):1249–1258. doi: https://doi.org/10.1007/s40520-016-0701-8.

    PubMed  Google Scholar 

  28. Zhao G. Is Iron Accumulation a Possible Risk Factor for Sarcopenia? Biol Trace Elem Res 2018;186(2):379–383. doi: https://doi.org/10.1007/s12011-018-1332-z.

    Article  CAS  Google Scholar 

  29. Amanzadeh J, Reilly RF, Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2006;2(3):136–148. doi: https://doi.org/10.1038/ncpneph0124.

    Article  CAS  Google Scholar 

  30. Skalnaya MG, Skalny AV, Grabeklis AR, Serebryansky EP, Demidov VA, Tinkov AA. Hair Trace Elements in Overweight and Obese Adults in Association with Metabolic Parameters. Biol Trace Elem Res 2018;186(1):12–20. doi: https://doi.org/10.1007/s12011-018-1282-5.

    Article  CAS  Google Scholar 

  31. Gonzalez-Reimers E, Martín-González C, Galindo-Martin L. Hair copper in normal individuals: relationship with body mass and dietary habits. Trace Elem Electroly 2014;31(2):67–72.

    Article  CAS  Google Scholar 

  32. Gaier ED, Kleppinger A, Ralle M, Mains RE, Kenny AM, Eipper BA. High serum Cu and Cu/Zn ratios correlate with impairments in bone density, physical performance and overall health in a population of elderly men with frailty characteristics. Exp Gerontol 2012;47(7):491–496. doi: https://doi.org/10.1016/j.exger.2012.03.014.

    Article  CAS  Google Scholar 

  33. Kim HN, Song SW. Concentrations of chromium, selenium, and copper in the hair of viscerally obese adults are associated with insulin resistance. Biol Trace Elem Res 2014;158(2):152–157. doi: https://doi.org/10.1007/s12011-014-9934-6.

    Article  CAS  Google Scholar 

  34. Chen QL, Luo Z, Liu X, et al. Effects of waterborne chronic copper exposure on hepatic lipid metabolism and metal-element composition in Synechogobius hasta. Arch Environ Contam Toxicol 2013;64(2):301–315. doi: https://doi.org/10.1007/s00244-012-9835-7.

    Article  CAS  Google Scholar 

  35. Guo CH, Wang CL. Effects of zinc supplementation on plasma copper/zinc ratios, oxidative stress, and immunological status in hemodialysis patients. Int J Med Sci 2013;10(1):79–89. doi: https://doi.org/10.7150/ijms.5291.

    Article  CAS  Google Scholar 

  36. Guo CH, Chen PC, Yeh MS, Hsiung DY, Wang CL. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochem 2011;44(4):275–280. doi: https://doi.org/10.1016/j.clinbiochem.2010.12.017.

    Article  CAS  Google Scholar 

  37. Jeong SY, Shim HY, Lee YJ, Park B. Association between Copper-Zinc Ratio in Hair and Neutrophil-Lymphocyte Ratio within the Context of a Normal White Blood Cell Count among Overweight or Obese Korean Individuals: A Pilot Study. Korean J Fam Med 2020. doi: https://doi.org/10.4082/kjfm.20.0018.

  38. Gaetke LM, Chow CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003;189(1–2):147–163. doi: https://doi.org/10.1016/s0300-483x(03)00159-8.

    Article  CAS  Google Scholar 

  39. Uriu-Adams JY, Keen CL. Copper, oxidative stress, and human health. Mol Aspects Med 2005;26(4-5):268–298. doi: https://doi.org/10.1016/j.mam.2005.07.015.

    Article  CAS  Google Scholar 

  40. Arnal N, Cristalli DO, de Alaniz MJ, Marra CA. Clinical utility of copper, ceruloplasmin, and metallothionein plasma determinations in human neurodegenerative patients and their first-degree relatives. Brain Res 2010;1319:118–130. doi: https://doi.org/10.1016/j.brainres.2009.11.085.

    Article  CAS  Google Scholar 

  41. Leone N, Courbon D, Ducimetiere P, Zureik M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 2006;17(3):308–314. doi: https://doi.org/10.1097/01.ede.0000209454.41466.b7.

    Article  Google Scholar 

  42. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr 2004;23(6):1430–1453. doi: https://doi.org/10.1016/j.clnu.2004.09.012.

    Article  Google Scholar 

  43. Deurenberg P. Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am J Clin Nutr 1996;64(3 Suppl):449s–452s. doi: https://doi.org/10.1093/ajcn/64.3.449S.

    Article  CAS  Google Scholar 

  44. Ellegård L, Bertz F, Winkvist A, Bosaeus I, Brekke HK. Body composition in overweight and obese women postpartum: bioimpedance methods validated by dual energy X-ray absorptiometry and doubly labeled water. Eur J Clin Nutr 2016;70(10):1181–1188. doi: https://doi.org/10.1038/ejcn.2016.50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Song.

Ethics declarations

For this type of study, formal consent was not required. The study was approved by the Catholic University of Korea St. Vincent’s Hospital Institutional Review Board (IRB approval number: VC19RISI0276).

Additional information

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YA., Kim, HN. & Song, SW. Associations between Hair Mineral Concentrations and Skeletal Muscle Mass in Korean Adults. J Nutr Health Aging 26, 515–520 (2022). https://doi.org/10.1007/s12603-022-1789-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12603-022-1789-5

Key words

Navigation